#Setting up R packages

Installing packages needed for analysis

lmerTest uses Satterthwaite approximations for pvalues in MEMs https://www.r-bloggers.com/2014/02/three-ways-to-get-parameter-specific-p-values-from-lmer/)

###Preliminary operations before the analysis

##Load data

#need to exclude speakers with NO Overt subjects; see prodrop categorical speakers.xlsx 

prodropdata <- subset(prodropdata, Speaker !="FXF11B")
prodropdata <- subset(prodropdata, Speaker !="FXF21A")
prodropdata <- subset(prodropdata, Speaker !="FXF29C")
prodropdata <- subset(prodropdata, Speaker !="FXF56B")
prodropdata <- subset(prodropdata, Speaker !="FXF56C")
prodropdata <- subset(prodropdata, Speaker !="FXF62B")
prodropdata <- subset(prodropdata, Speaker !="FXF72B")
prodropdata <- subset(prodropdata, Speaker !="FXM11B")
prodropdata <- subset(prodropdata, Speaker !="FXM23B")
prodropdata <- subset(prodropdata, Speaker !="FXM25A")
prodropdata <- subset(prodropdata, Speaker !="FXM27B")
prodropdata <- subset(prodropdata, Speaker !="FXM28A")
prodropdata <- subset(prodropdata, Speaker !="FXM34A")
prodropdata <- subset(prodropdata, Speaker !="FXM47A")
prodropdata <- subset(prodropdata, Speaker !="FXM47C")

Ordering factor vectors to determine the default factor. We need to do it for the bigger models.

Subsetting data

Changing and checking factor levels in new data sets

#Summaries of each subset

##   Prodrop        Speaker        Person       Number     Grammatical_gender
##  Null :1338   C2F21C : 102   first :2064   sg   :2541   /      :   0      
##  Overt:2171   C1F50A : 100   second: 369   pl   : 927   F      :   0      
##               C1F50B : 100   third :1035   other:   0   generic:   0      
##               C1F54B : 100   NA's  :  41   NA's :  41   M      :   0      
##               C1F58A : 100                              neuter :   0      
##               C1F74A : 100                              (Other):   0      
##               (Other):2907                              NA's   :3509      
##         Tense         Switch_disc        Clause_type   Preverbal_content_binary
##  present   :2204   different:1464   main       :3134   none:   0               
##  nonpresent:1083   Other    :   0   conjoined  : 375   yes :   0               
##  other     : 222   same     :2045   subordinate:   0   NA's:3509               
##  non-past  :   0                                                               
##  past      :   0                                                               
##                                                                                
##                                                                                
##  Preverbal_content    Generation   Sex           Age     Transcription     
##  NA's:3509         Homeland: 708   M:1497   Min.   :16   Length:3509       
##                    Gen1    :1400   F:2012   1st Qu.:21   Class :character  
##                    Gen2    :1401            Median :43   Mode  :character  
##                                             Mean   :42                     
##                                             3rd Qu.:58                     
##                                             Max.   :87                     
##                                                                            
##       Language     Token.number     EO_lang       EO_culture  
##  Cantonese:3509   Min.   :   1   Min.   :-3     Min.   :-1    
##  Faetar   :   0   1st Qu.: 878   1st Qu.:-2     1st Qu.:-1    
##  Italian  :   0   Median :1755   Median :-1     Median : 0    
##  Korean   :   0   Mean   :1755   Mean   : 0     Mean   : 0    
##  Polish   :   0   3rd Qu.:2632   3rd Qu.: 1     3rd Qu.: 0    
##  Ukrainian:   0   Max.   :3509   Max.   : 3     Max.   : 2    
##                                  NA's   :1408   NA's   :1408
##   Prodrop        Speaker       Person       Number    Grammatical_gender
##  Null :1393   FXM77A :349   first : 261   sg   :783   M      :561       
##  Overt: 217   FXF40A :150   second:  91   pl   :197   F      :233       
##               FXF56A :111   third :1258   other:  0   Other  : 41       
##               F1F71A : 93                 NA's :630   /      :  0       
##               F1M92A : 91                             generic:  0       
##               F2M32A : 88                             (Other):  0       
##               (Other):728                             NA's   :775       
##         Tense         Switch_disc       Clause_type   Preverbal_content_binary
##  non-past  :1136   different:527   conjoined  :   0   none:1292               
##  nonpresent: 474   Other    :  0   main       :   0   yes : 318               
##  other     :   0   same     :284   subordinate:   0                           
##  past      :   0   NA's     :799   NA's       :1610                           
##  present   :   0                                                              
##                                                                               
##                                                                               
##  Preverbal_content     Generation  Sex          Age     Transcription     
##  Length:1610        Homeland:799   M:869   Min.   :26   Length:1610       
##  Class :character   Gen1    :578   F:741   1st Qu.:51   Class :character  
##  Mode  :character   Gen2    :233           Median :71   Mode  :character  
##                                            Mean   :63                     
##                                            3rd Qu.:77                     
##                                            Max.   :92                     
##                                                                           
##       Language     Token.number     EO_lang       EO_culture  
##  Cantonese:   0   Min.   :   1   Min.   : NA    Min.   : NA   
##  Faetar   :1610   1st Qu.: 302   1st Qu.: NA    1st Qu.: NA   
##  Italian  :   0   Median : 552   Median : NA    Median : NA   
##  Korean   :   0   Mean   : 687   Mean   :NaN    Mean   :NaN   
##  Polish   :   0   3rd Qu.:1217   3rd Qu.: NA    3rd Qu.: NA   
##  Ukrainian:   0   Max.   :1648   Max.   : NA    Max.   : NA   
##                                  NA's   :1610   NA's   :1610
##   Prodrop        Speaker        Person       Number     Grammatical_gender
##  Null :1377   I1M61B : 124   first :1196   sg   :1172   M      : 495      
##  Overt: 416   I1M62A : 104   second:  94   pl   : 621   F      :   8      
##               I1M75A : 101   third : 503   other:   0   /      :   0      
##               I2F45A : 100                              generic:   0      
##               I2F44A :  99                              neuter :   0      
##               I2M42A :  99                              (Other):   0      
##               (Other):1166                              NA's   :1290      
##         Tense        Switch_disc       Clause_type   Preverbal_content_binary
##  present   :955   different:874   main       :1469   none:1424               
##  nonpresent:813   Other    :  0   conjoined  : 324   yes : 369               
##  non-past  :  0   same     :919   subordinate:   0                           
##  other     : 18                                                              
##  past      :  0                                                              
##  NA's      :  7                                                              
##                                                                              
##  Preverbal_content    Generation  Sex           Age      Transcription     
##  2   : 106         Homeland:748   M:1109   Min.   :14    Length:1793       
##  Neg : 260         Gen1    :375   F: 684   1st Qu.:35    Class :character  
##  none:1427         Gen2    :670            Median :47    Mode  :character  
##                                            Mean   :47                      
##                                            3rd Qu.:61                      
##                                            Max.   :75                      
##                                            NA's   :277                     
##       Language     Token.number     EO_lang      EO_culture 
##  Cantonese:   0   Min.   :   1   Min.   :-2    Min.   :-1   
##  Faetar   :   0   1st Qu.: 449   1st Qu.:-1    1st Qu.: 0   
##  Italian  :1793   Median : 897   Median : 0    Median : 0   
##  Korean   :   0   Mean   : 897   Mean   : 0    Mean   : 0   
##  Polish   :   0   3rd Qu.:1345   3rd Qu.: 1    3rd Qu.: 0   
##  Ukrainian:   0   Max.   :1793   Max.   : 2    Max.   : 2   
##                                  NA's   :748   NA's   :748
##   Prodrop       Speaker       Person      Number    Grammatical_gender
##  Null :780   K0F15A :217   first :753   sg   :724   /      :  0       
##  Overt:211   K2M36A :111   second: 81   pl   :110   F      :  0       
##              K2F18A : 88   third :142   other:142   generic:  0       
##              K1F56A : 84   NA's  : 15   NA's : 15   M      :  0       
##              K2M39A : 81                            neuter :  0       
##              K2M16A : 71                            (Other):  0       
##              (Other):339                            NA's   :991       
##         Tense        Switch_disc       Clause_type  Preverbal_content_binary
##  non-past  :  0   different:394   main       :482   none:258                
##  nonpresent:  0   Other    :  0   conjoined  :509   yes :733                
##  other     :  0   same     :577   subordinate:  0                           
##  past      :  0   NA's     : 20                                             
##  present   :  0                                                             
##  NA's      :991                                                             
##                                                                             
##  Preverbal_content    Generation  Sex          Age     Transcription     
##  NA's:991          Homeland:376   M:439   Min.   :15   Length:991        
##                    Gen1    :169   F:552   1st Qu.:15   Class :character  
##                    Gen2    :446           Median :28   Mode  :character  
##                                           Mean   :31                     
##                                           3rd Qu.:40                     
##                                           Max.   :65                     
##                                                                          
##       Language    Token.number    EO_lang      EO_culture 
##  Cantonese:  0   Min.   :  1   Min.   :-2    Min.   :-1   
##  Faetar   :  0   1st Qu.:248   1st Qu.:-2    1st Qu.: 0   
##  Italian  :  0   Median :496   Median :-2    Median : 1   
##  Korean   :991   Mean   :496   Mean   :-1    Mean   : 0   
##  Polish   :  0   3rd Qu.:744   3rd Qu.: 0    3rd Qu.: 1   
##  Ukrainian:  0   Max.   :991   Max.   : 1    Max.   : 1   
##                                NA's   :674   NA's   :674
##   Prodrop       Speaker       Person      Number    Grammatical_gender
##  Null :762   PXF44A :108   first :676   sg   :757   M      :334       
##  Overt:225   PXF16A :101   second: 68   pl   :230   F      :152       
##              P1M44A : 87   third :243   other:  0   /      :  0       
##              P1M55A : 76                            generic:  0       
##              P1M88A : 61                            neuter :  0       
##              P1M36A : 57                            (Other):  0       
##              (Other):497                            NA's   :501       
##         Tense        Switch_disc       Clause_type  Preverbal_content_binary
##  present   :464   Other    : 12   main       :167   none:880                
##  nonpresent:523   different:414   conjoined  :820   yes :107                
##  non-past  :  0   same     :555   subordinate:  0                           
##  other     :  0   NA's     :  6                                             
##  past      :  0                                                             
##                                                                             
##                                                                             
##  Preverbal_content    Generation  Sex          Age     Transcription     
##      :  1          Homeland:209   M:613   Min.   :16   Length:987        
##  Neg :107          Gen1    :392   F:374   1st Qu.:22   Class :character  
##  none:879          Gen2    :386           Median :44   Mode  :character  
##                                           Mean   :39                     
##                                           3rd Qu.:55                     
##                                           Max.   :88                     
##                                                                          
##       Language    Token.number    EO_lang      EO_culture 
##  Cantonese:  0   Min.   :  2   Min.   :-1    Min.   :-2   
##  Faetar   :  0   1st Qu.:248   1st Qu.: 0    1st Qu.: 0   
##  Italian  :  0   Median :495   Median : 0    Median : 1   
##  Korean   :  0   Mean   :495   Mean   : 0    Mean   : 1   
##  Polish   :987   3rd Qu.:742   3rd Qu.: 0    3rd Qu.: 2   
##  Ukrainian:  0   Max.   :988   Max.   : 1    Max.   : 4   
##                                NA's   :320   NA's   :320
##   Prodrop       Speaker       Person      Number    Grammatical_gender
##  Null : 61   U1F57A : 25   first :174   sg   :214   neuter :  8       
##  Overt:239   U1F85A : 25   second: 31   pl   : 83   /      :  1       
##              U1F90A : 25   third : 92   other:  0   F      :104       
##              U1M46A : 25   NA's  :  3   NA's :  3   generic: 23       
##              U2F13A : 25                            M      : 82       
##              U2F44A : 25                            Other  :  0       
##              (Other):150                            plural : 82       
##         Tense        Switch_disc       Clause_type  Preverbal_content_binary
##  past      :131   different:150   main       :171   none:  0                
##  non-past  :169   Other    :  0   conjoined  : 63   yes :  0                
##  nonpresent:  0   same     :148   subordinate: 47   NA's:300                
##  other     :  0   NA's     :  2   NA's       : 19                           
##  present   :  0                                                             
##                                                                             
##                                                                             
##  Preverbal_content    Generation  Sex          Age     Transcription     
##  NA's:300          Homeland:100   M:125   Min.   :13   Length:300        
##                    Gen1    :100   F:175   1st Qu.:40   Class :character  
##                    Gen2    :100           Median :51   Mode  :character  
##                                           Mean   :52                     
##                                           3rd Qu.:67                     
##                                           Max.   :90                     
##                                                                          
##       Language    Token.number    EO_lang      EO_culture 
##  Cantonese:  0   Min.   :  1   Min.   :-3    Min.   :-1   
##  Faetar   :  0   1st Qu.: 76   1st Qu.:-1    1st Qu.:-1   
##  Italian  :  0   Median :150   Median : 0    Median :-1   
##  Korean   :  0   Mean   :184   Mean   : 0    Mean   :-1   
##  Polish   :  0   3rd Qu.:325   3rd Qu.: 1    3rd Qu.: 0   
##  Ukrainian:300   Max.   :400   Max.   : 1    Max.   : 0   
##                                NA's   :175   NA's   :175

sending the subset to the lme4 function for main effects; full dataset for each language

###REML=TRUE gives REML criterion at convergence; REML=FALSE (or not listed) gives AIC, LL, etc. ##Main effects for Cantonese

 main_effect_cantonese <- glmer (Prodrop ~ Person +
                                  Number + 
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = cantonesedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effect_cantonese, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + Generation + (1 | Speaker)
##    Data: cantonesedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     4015     4089    -1996     3991     3456 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -6.048 -0.830  0.414  0.697  2.969 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.483    0.695   
## Number of obs: 3468, groups:  Speaker, 36
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.8193     0.3319    2.47   0.0136 *  
## Personsecond           1.1507     0.1664    6.92  4.7e-12 ***
## Personthird            0.3636     0.0934    3.89  1.0e-04 ***
## Numberpl              -0.6129     0.0985   -6.22  5.0e-10 ***
## Tensenonpresent       -0.3956     0.0933   -4.24  2.2e-05 ***
## Tenseother            -0.1317     0.1676   -0.79   0.4318    
## Switch_discsame       -1.0383     0.0836  -12.42  < 2e-16 ***
## Clause_typeconjoined   0.3922     0.1379    2.84   0.0044 ** 
## SexF                   0.4268     0.2531    1.69   0.0918 .  
## GenerationGen1         0.0905     0.3330    0.27   0.7859    
## GenerationGen2         0.3700     0.3306    1.12   0.2631    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Main effects in Faetar

main_effect_faetar <- glmer (Prodrop ~ Person +
                                   Number + 
                                   Tense + 
                                    Grammatical_gender +
                                    Switch_disc +
                                    Preverbal_content_binary +
                                   Sex +
                                    Generation 
                                  + (1|Speaker),

data = faetardata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(main_effect_faetar, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Tense + Grammatical_gender + Switch_disc +  
##     Preverbal_content_binary + Sex + Generation + (1 | Speaker)
##    Data: faetardata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      151      192      -64      129      319 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.965 -0.247 -0.095 -0.054  4.221 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 2        1.41    
## Number of obs: 330, groups:  Speaker, 13
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   -1.368      2.243   -0.61    0.542  
## Personthird                   -2.603      1.669   -1.56    0.119  
## Numberpl                      -1.238      0.928   -1.33    0.182  
## Tensenonpresent                1.117      1.116    1.00    0.317  
## Grammatical_genderF            0.878      0.540    1.63    0.104  
## Grammatical_genderOther      -17.162    387.036   -0.04    0.965  
## Switch_discsame               -0.141      0.587   -0.24    0.810  
## Preverbal_content_binaryyes   -1.505      0.841   -1.79    0.074 .
## SexF                          -1.865      1.250   -1.49    0.136  
## GenerationGen2                 1.020      1.133    0.90    0.368  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
#checking for KOs across Faetar dataset
table(faetardata$Person,faetardata$Prodrop)
##         
##          Null Overt
##   first   205    56
##   second   61    30
##   third  1127   131
table(faetardata$Number,faetardata$Prodrop)
##        
##         Null Overt
##   sg     709    74
##   pl     177    20
##   other    0     0
table(faetardata$Tense,faetardata$Prodrop)
##             
##              Null Overt
##   non-past    980   156
##   nonpresent  413    61
##   other         0     0
##   past          0     0
##   present       0     0
table(faetardata$Switch_disc,faetardata$Prodrop)
##            
##             Null Overt
##   different  445    82
##   Other        0     0
##   same       246    38
table(faetardata$Grammatical_gender,faetardata$Prodrop)
##          
##           Null Overt
##   M        515    46
##   F        208    25
##   Other     38     3
##   /          0     0
##   generic    0     0
##   neuter     0     0
##   plural     0     0
table(faetardata$Clause_type,faetardata$Prodrop)
##              
##               Null Overt
##   conjoined      0     0
##   main           0     0
##   subordinate    0     0
table(faetardata$Preverbal_content_binary,faetardata$Prodrop)
##       
##        Null Overt
##   none 1116   176
##   yes   277    41
table(faetardata$Sex,faetardata$Prodrop)
##    
##     Null Overt
##   M  749   120
##   F  644    97
table(faetardata$Generation,faetardata$Prodrop)
##           
##            Null Overt
##   Homeland  702    97
##   Gen1      500    78
##   Gen2      191    42

##Main effects in Italian

main_effect_italian <- glmer (Prodrop ~ Person +
                                  Number + 
                                 # Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = italiandata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effect_italian, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + Generation + (1 | Speaker)
##    Data: italiandata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     1760     1832     -867     1734     1773 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.350 -0.549 -0.375 -0.179  5.597 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.38     0.617   
## Number of obs: 1786, groups:  Speaker, 27
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  -0.4832     0.2373   -2.04    0.042 *  
## Personsecond                 -0.5528     0.2772   -1.99    0.046 *  
## Personthird                  -0.0934     0.1615   -0.58    0.563    
## Numberpl                     -1.1521     0.1566   -7.36  1.9e-13 ***
## Tensenonpresent               0.0423     0.1287    0.33    0.742    
## Tenseother                   -0.4571     0.6025   -0.76    0.448    
## Switch_discsame              -1.0604     0.1341   -7.90  2.7e-15 ***
## Clause_typeconjoined         -0.2561     0.1653   -1.55    0.121    
## Preverbal_content_binaryyes  -0.1562     0.1506   -1.04    0.300    
## SexF                          0.3857     0.2858    1.35    0.177    
## GenerationGen1               -0.1014     0.3885   -0.26    0.794    
## GenerationGen2               -0.0453     0.3217   -0.14    0.888    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Main effects in Korean

main_effect_korean <- glmer (Prodrop ~ Person +
                                  Number + 
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = koreandata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
summary(main_effect_korean, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Switch_disc + Clause_type + Preverbal_content_binary +  
##     Sex + Generation + (1 | Speaker)
##    Data: koreandata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      873      926     -426      851      945 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.185 -0.533 -0.365 -0.145 11.130 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.276    0.526   
## Number of obs: 956, groups:  Speaker, 16
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  -1.9643     0.4224   -4.65  3.3e-06 ***
## Personsecond                 -1.5681     0.4206   -3.73  0.00019 ***
## Personthird                  -2.8035     0.5242   -5.35  8.9e-08 ***
## Numberpl                     -0.6576     0.2846   -2.31  0.02083 *  
## Switch_discsame              -0.4307     0.1774   -2.43  0.01520 *  
## Clause_typeconjoined          0.5457     0.1785    3.06  0.00224 ** 
## Preverbal_content_binaryyes   0.5942     0.2221    2.68  0.00747 ** 
## SexF                         -0.0429     0.3435   -0.13  0.90050    
## GenerationGen1                0.1538     0.4720    0.33  0.74445    
## GenerationGen2                0.5267     0.3863    1.36  0.17273    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient

##Main effects in Polish

main_effect_polish <- glmer (Prodrop ~ Person +
                                   Number + 
                                   Grammatical_gender +
                                  # Tense +
                                   Switch_disc +
                                   Clause_type +
                                   Preverbal_content_binary +
                                   Sex +
                                   Generation 
                  + (1|Speaker),
                    data = polishdata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effect_polish, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Sex + Generation +  
##     (1 | Speaker)
##    Data: polishdata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      500      554     -237      474      473 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.244 -0.552 -0.364  0.000  5.545 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.668    0.817   
## Number of obs: 486, groups:  Speaker, 15
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                 -17.3415    66.3797   -0.26   0.7939   
## Personsecond                  0.4210     0.5220    0.81   0.4200   
## Personthird                   0.8582     0.2997    2.86   0.0042 **
## Numberpl                     -0.5235     0.3133   -1.67   0.0947 . 
## Grammatical_genderM          -0.4975     0.3659   -1.36   0.1739   
## Switch_discdifferent         16.1188    66.3769    0.24   0.8081   
## Switch_discsame              15.0691    66.3770    0.23   0.8204   
## Clause_typeconjoined          0.0872     0.3855    0.23   0.8211   
## Preverbal_content_binaryyes   0.2186     0.4890    0.45   0.6549   
## SexF                          0.1113     0.6707    0.17   0.8682   
## GenerationGen1                0.4578     0.9107    0.50   0.6152   
## GenerationGen2                0.9110     0.8527    1.07   0.2853   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Main effects in Ukrainian

main_effect_ukrainian <- glmer (Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                               #   Preverbal_content_binary +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = ukrainiandata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(main_effect_ukrainian, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Grammatical_gender + Tense + Switch_disc +  
##     Clause_type + Sex + Generation + (1 | Speaker)
##    Data: ukrainiandata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      274      328     -122      244      262 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.182  0.147  0.340  0.493  1.463 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.318    0.564   
## Number of obs: 277, groups:  Speaker, 12
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                2.7107     0.7523    3.60  0.00031 ***
## Personsecond              -0.0387     0.8569   -0.05  0.96401    
## Personthird               -0.2529     0.4223   -0.60  0.54929    
## Numberpl                  17.0314   173.0878    0.10  0.92162    
## Grammatical_genderM        0.7818     0.6251    1.25  0.21099    
## Grammatical_genderOther   -0.6275     0.8938   -0.70  0.48262    
## Grammatical_genderplural -17.7378   173.0879   -0.10  0.91838    
## Tensenon-past             -0.5931     0.3730   -1.59  0.11186    
## Switch_discsame           -0.9342     0.3570   -2.62  0.00888 ** 
## Clause_typeconjoined      -0.4893     0.3872   -1.26  0.20631    
## Clause_typesubordinate     0.7581     0.5672    1.34  0.18140    
## SexF                       0.6947     0.5764    1.21  0.22812    
## GenerationGen1            -1.0055     0.6195   -1.62  0.10454    
## GenerationGen2            -0.6658     0.6264   -1.06  0.28780    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

##Models for interactions. All speakers for each language

##Interactions for Cantonese

interactions_cantonese <- glmer (Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  #Preverbal_content_binary +
                                 Sex +
                                  Generation +
                                   Person*Sex +
                                   Person*Generation +
                                   Number*Sex +
                                   Number*Generation +
                                   #Grammatical_gender*Sex +
                                   #Grammatical_gender*Generation +
                                   Tense*Sex +
                                   Tense*Generation +
                                   Switch_disc*Sex +
                                   Switch_disc*Generation +
                                   Clause_type*Sex +
                                   Clause_type*Generation +
                                   #Preverbal_content_binary*Sex +
                                 #Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = cantonesedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
summary(interactions_cantonese, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + Generation + Person * Sex + Person * Generation + Number *  
##     Sex + Number * Generation + Tense * Sex + Tense * Generation +  
##     Switch_disc * Sex + Switch_disc * Generation + Clause_type *  
##     Sex + Clause_type * Generation + (1 | Speaker)
##    Data: cantonesedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     3985     4188    -1959     3919     3435 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -7.720 -0.792  0.397  0.675  2.846 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.495    0.703   
## Number of obs: 3468, groups:  Speaker, 36
## 
## Fixed effects:
##                                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                          1.04658    0.38892    2.69  0.00712 ** 
## Personsecond                         1.73551    0.37783    4.59  4.4e-06 ***
## Personthird                          0.49543    0.27789    1.78  0.07462 .  
## Numberpl                            -0.39704    0.28826   -1.38  0.16840    
## Tensenonpresent                     -1.11271    0.25459   -4.37  1.2e-05 ***
## Tenseother                          -2.57464    1.21885   -2.11  0.03466 *  
## Switch_discsame                     -0.98790    0.23416   -4.22  2.5e-05 ***
## Clause_typeconjoined                -0.70779    0.37942   -1.87  0.06212 .  
## SexF                                 0.40601    0.30204    1.34  0.17887    
## GenerationGen1                      -0.00626    0.40145   -0.02  0.98756    
## GenerationGen2                      -0.03930    0.39615   -0.10  0.92097    
## Personsecond:SexF                   -0.59300    0.33317   -1.78  0.07509 .  
## Personthird:SexF                     0.28479    0.20004    1.42  0.15453    
## Personsecond:GenerationGen1         -0.96881    0.41949   -2.31  0.02092 *  
## Personthird:GenerationGen1          -0.48495    0.27318   -1.78  0.07586 .  
## Personsecond:GenerationGen2          0.05511    0.43598    0.13  0.89940    
## Personthird:GenerationGen2          -0.10850    0.28630   -0.38  0.70471    
## Numberpl:SexF                       -0.44760    0.21046   -2.13  0.03344 *  
## Numberpl:GenerationGen1             -0.11538    0.28565   -0.40  0.68626    
## Numberpl:GenerationGen2              0.11478    0.29659    0.39  0.69874    
## Tensenonpresent:SexF                 0.62398    0.19606    3.18  0.00146 ** 
## Tenseother:SexF                      0.73852    0.36012    2.05  0.04029 *  
## Tensenonpresent:GenerationGen1       0.52222    0.26204    1.99  0.04627 *  
## Tenseother:GenerationGen1            2.12639    1.22141    1.74  0.08170 .  
## Tensenonpresent:GenerationGen2       0.42889    0.26380    1.63  0.10399    
## Tenseother:GenerationGen2            2.17967    1.20071    1.82  0.06947 .  
## Switch_discsame:SexF                -0.17798    0.17417   -1.02  0.30683    
## Switch_discsame:GenerationGen1      -0.04628    0.23800   -0.19  0.84581    
## Switch_discsame:GenerationGen2       0.17756    0.24199    0.73  0.46310    
## Clause_typeconjoined:SexF            0.02594    0.32322    0.08  0.93603    
## Clause_typeconjoined:GenerationGen1  1.87156    0.38985    4.80  1.6e-06 ***
## Clause_typeconjoined:GenerationGen2  1.33963    0.36211    3.70  0.00022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Interactions for Faetar

interactions_faetar <- glmer (Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                 # Tense +
                                  Switch_disc +
                                  #Clause_type +
                                  Preverbal_content_binary +
                                  #EO_lang +
                                  #EO_culture +
                                  Sex +
                                  Generation +
                                   Person*Sex +
                                   Person*Generation +
                                   Number*Sex +
                                   Number*Generation +
                                   Grammatical_gender*Sex +
                                   Grammatical_gender*Generation +
                               #    Tense*Sex +
                               #    Tense*Generation +
                                   Switch_disc*Sex +
                                   Switch_disc*Generation +
                                   #Clause_type*Sex +
                                   #Clause_type*Generation +
                                   Preverbal_content_binary*Sex +
                                 Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = faetardata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Hessian is numerically singular: parameters are not uniquely determined
summary(interactions_faetar, correl=F) 
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Preverbal_content_binary + Sex + Generation + Person * Sex +  
##     Person * Generation + Number * Sex + Number * Generation +  
##     Grammatical_gender * Sex + Grammatical_gender * Generation +  
##     Switch_disc * Sex + Switch_disc * Generation + Preverbal_content_binary *  
##     Sex + Preverbal_content_binary * Generation + (1 | Speaker)
##    Data: faetardata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      166      246      -62      124      309 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.742 -0.251 -0.097 -0.076  4.551 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 1.62     1.27    
## Number of obs: 330, groups:  Speaker, 13
## 
## Fixed effects:
##                                             Estimate Std. Error z value
## (Intercept)                                -1.84e+01   2.10e+04    0.00
## Personthird                                 1.60e+01   2.10e+04    0.00
## Numberpl                                   -1.73e+00   1.15e+00   -1.50
## Grammatical_genderF                         1.06e-01   7.31e-01    0.14
## Grammatical_genderOther                    -1.89e+01   7.91e+03    0.00
## Switch_discsame                            -2.38e-01   8.04e-01   -0.30
## Preverbal_content_binaryyes                -1.90e+00   1.24e+00   -1.54
## SexF                                        6.60e+01   4.00e+04    0.00
## GenerationGen2                              6.85e-02   1.32e+00    0.05
## Personthird:SexF                           -6.85e+01   4.00e+04    0.00
## Numberpl:SexF                              -1.40e+01   6.84e+03    0.00
## Numberpl:GenerationGen2                    -1.54e+01   9.62e+03    0.00
## Grammatical_genderF:SexF                    3.46e-01   1.45e+00    0.24
## Grammatical_genderOther:SexF                3.73e+00   1.49e+04    0.00
## Grammatical_genderF:GenerationGen2          1.34e+00   1.17e+00    1.14
## Grammatical_genderOther:GenerationGen2      2.11e+00   1.54e+04    0.00
## Switch_discsame:SexF                        4.86e-01   1.67e+00    0.29
## Switch_discsame:GenerationGen2             -6.87e-02   1.25e+00   -0.05
## Preverbal_content_binaryyes:SexF            1.82e+00   1.94e+00    0.94
## Preverbal_content_binaryyes:GenerationGen2  4.19e-02   1.87e+00    0.02
##                                            Pr(>|z|)
## (Intercept)                                    1.00
## Personthird                                    1.00
## Numberpl                                       0.13
## Grammatical_genderF                            0.88
## Grammatical_genderOther                        1.00
## Switch_discsame                                0.77
## Preverbal_content_binaryyes                    0.12
## SexF                                           1.00
## GenerationGen2                                 0.96
## Personthird:SexF                               1.00
## Numberpl:SexF                                  1.00
## Numberpl:GenerationGen2                        1.00
## Grammatical_genderF:SexF                       0.81
## Grammatical_genderOther:SexF                   1.00
## Grammatical_genderF:GenerationGen2             0.25
## Grammatical_genderOther:GenerationGen2         1.00
## Switch_discsame:SexF                           0.77
## Switch_discsame:GenerationGen2                 0.96
## Preverbal_content_binaryyes:SexF               0.35
## Preverbal_content_binaryyes:GenerationGen2     0.98
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## optimizer (bobyqa) convergence code: 0 (OK)
## unable to evaluate scaled gradient
##  Hessian is numerically singular: parameters are not uniquely determined

##Interactions for Italian

interactions_italian <- glmer (Prodrop ~ Person +
                                  Number + 
                                 # Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                   Person*Sex +
                                   Person*Generation +
                                   Number*Sex +
                                   Number*Generation +
                                #   Grammatical_gender*Sex +
                                 #  Grammatical_gender*Generation +
                                   Tense*Sex +
                                   Tense*Generation +
                                   Switch_disc*Sex +
                                   Switch_disc*Generation +
                                   Clause_type*Sex +
                                   Clause_type*Generation +
                                   Preverbal_content_binary*Sex +
                                 Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = italiandata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
summary(interactions_italian, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + Generation + Person * Sex +  
##     Person * Generation + Number * Sex + Number * Generation +  
##     Tense * Sex + Tense * Generation + Switch_disc * Sex + Switch_disc *  
##     Generation + Clause_type * Sex + Clause_type * Generation +  
##     Preverbal_content_binary * Sex + Preverbal_content_binary *  
##     Generation + (1 | Speaker)
##    Data: italiandata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     1744     1936     -837     1674     1751 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.683 -0.544 -0.349 -0.144  6.560 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.456    0.675   
## Number of obs: 1786, groups:  Speaker, 27
## 
## Fixed effects:
##                                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                 -0.2912     0.3016   -0.97  0.33429
## Personsecond                                -0.9390     0.4392   -2.14  0.03251
## Personthird                                 -1.1254     0.3076   -3.66  0.00025
## Numberpl                                    -1.2213     0.2828   -4.32  1.6e-05
## Tensenonpresent                              0.2283     0.2328    0.98  0.32686
## Tenseother                                  -1.4297     1.1167   -1.28  0.20047
## Switch_discsame                             -1.0498     0.2538   -4.14  3.5e-05
## Clause_typeconjoined                        -0.4218     0.3047   -1.38  0.16627
## Preverbal_content_binaryyes                  0.1112     0.2859    0.39  0.69730
## SexF                                        -0.0157     0.3816   -0.04  0.96712
## GenerationGen1                              -0.1844     0.5140   -0.36  0.71971
## GenerationGen2                               0.0574     0.4210    0.14  0.89155
## Personsecond:SexF                           -0.1314     0.6233   -0.21  0.83304
## Personthird:SexF                            -0.0570     0.3839   -0.15  0.88196
## Personsecond:GenerationGen1                  1.9882     0.9054    2.20  0.02810
## Personthird:GenerationGen1                   1.6509     0.5430    3.04  0.00236
## Personsecond:GenerationGen2                  0.9639     0.8124    1.19  0.23540
## Personthird:GenerationGen2                   1.8708     0.4034    4.64  3.5e-06
## Numberpl:SexF                                0.3122     0.3607    0.87  0.38686
## Numberpl:GenerationGen1                     -0.5218     0.4783   -1.09  0.27530
## Numberpl:GenerationGen2                     -0.0864     0.3820   -0.23  0.82098
## Tensenonpresent:SexF                         0.8904     0.2971    3.00  0.00273
## Tenseother:SexF                              1.7823     1.3600    1.31  0.19000
## Tensenonpresent:GenerationGen1              -0.2951     0.3702   -0.80  0.42534
## Tensenonpresent:GenerationGen2              -1.2484     0.3194   -3.91  9.3e-05
## Switch_discsame:SexF                        -0.0485     0.2941   -0.16  0.86908
## Switch_discsame:GenerationGen1              -0.5117     0.3983   -1.28  0.19889
## Switch_discsame:GenerationGen2               0.0900     0.3204    0.28  0.77875
## Clause_typeconjoined:SexF                    0.0679     0.3802    0.18  0.85820
## Clause_typeconjoined:GenerationGen1          0.6164     0.4638    1.33  0.18382
## Clause_typeconjoined:GenerationGen2         -0.0319     0.4016   -0.08  0.93670
## Preverbal_content_binaryyes:SexF             0.0720     0.3391    0.21  0.83185
## Preverbal_content_binaryyes:GenerationGen1  -0.2208     0.4267   -0.52  0.60491
## Preverbal_content_binaryyes:GenerationGen2  -0.7209     0.3612   -2.00  0.04595
##                                               
## (Intercept)                                   
## Personsecond                               *  
## Personthird                                ***
## Numberpl                                   ***
## Tensenonpresent                               
## Tenseother                                    
## Switch_discsame                            ***
## Clause_typeconjoined                          
## Preverbal_content_binaryyes                   
## SexF                                          
## GenerationGen1                                
## GenerationGen2                                
## Personsecond:SexF                             
## Personthird:SexF                              
## Personsecond:GenerationGen1                *  
## Personthird:GenerationGen1                 ** 
## Personsecond:GenerationGen2                   
## Personthird:GenerationGen2                 ***
## Numberpl:SexF                                 
## Numberpl:GenerationGen1                       
## Numberpl:GenerationGen2                       
## Tensenonpresent:SexF                       ** 
## Tenseother:SexF                               
## Tensenonpresent:GenerationGen1                
## Tensenonpresent:GenerationGen2             ***
## Switch_discsame:SexF                          
## Switch_discsame:GenerationGen1                
## Switch_discsame:GenerationGen2                
## Clause_typeconjoined:SexF                     
## Clause_typeconjoined:GenerationGen1           
## Clause_typeconjoined:GenerationGen2           
## Preverbal_content_binaryyes:SexF              
## Preverbal_content_binaryyes:GenerationGen1    
## Preverbal_content_binaryyes:GenerationGen2 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients

##Interactions for Korean

interactions_korean <- glmer (Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  #Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                   Person*Sex +
                                   Person*Generation +
                                   Number*Sex +
                                   Number*Generation +
                                   #Grammatical_gender*Sex +
                                   #Grammatical_gender*Generation +
                                   #Tense*Sex +
                                   #Tense*Generation +
                                   Switch_disc*Sex +
                                   Switch_disc*Generation +
                                   Clause_type*Sex +
                                   Clause_type*Generation +
                                   Preverbal_content_binary*Sex +
                                 Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = koreandata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 4 columns / coefficients
summary(interactions_korean, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Switch_disc + Clause_type + Preverbal_content_binary +  
##     Sex + Generation + Person * Sex + Person * Generation + Number *  
##     Sex + Number * Generation + Switch_disc * Sex + Switch_disc *  
##     Generation + Clause_type * Sex + Clause_type * Generation +  
##     Preverbal_content_binary * Sex + Preverbal_content_binary *  
##     Generation + (1 | Speaker)
##    Data: koreandata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      886     1027     -414      828      927 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.465 -0.517 -0.340 -0.105 12.569 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.419    0.648   
## Number of obs: 956, groups:  Speaker, 16
## 
## Fixed effects:
##                                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                -2.89091    0.73854   -3.91  9.1e-05
## Personsecond                               -0.33493    0.85826   -0.39    0.696
## Personthird                                -3.10797    1.64114   -1.89    0.058
## Numberpl                                    0.72356    0.67947    1.06    0.287
## Switch_discsame                             0.03466    0.46075    0.08    0.940
## Clause_typeconjoined                        1.06463    0.45771    2.33    0.020
## Preverbal_content_binaryyes                 0.58822    0.57230    1.03    0.304
## SexF                                        0.44351    0.64210    0.69    0.490
## GenerationGen1                              1.85195    0.82620    2.24    0.025
## GenerationGen2                              1.03339    0.73899    1.40    0.162
## Personsecond:SexF                          -0.93463    0.97566   -0.96    0.338
## Personthird:SexF                            1.18690    1.47608    0.80    0.421
## Personsecond:GenerationGen1                -0.93894    1.26709   -0.74    0.459
## Personthird:GenerationGen1                  0.36584    1.50105    0.24    0.807
## Personsecond:GenerationGen2                -1.74823    1.10561   -1.58    0.114
## Personthird:GenerationGen2                 -1.24730    1.50913   -0.83    0.409
## Numberpl:SexF                              -1.07179    0.63327   -1.69    0.091
## Numberpl:GenerationGen1                    -1.02773    0.84282   -1.22    0.223
## Numberpl:GenerationGen2                    -1.21342    0.72655   -1.67    0.095
## Switch_discsame:SexF                       -0.12002    0.41519   -0.29    0.773
## Switch_discsame:GenerationGen1             -0.60910    0.56263   -1.08    0.279
## Switch_discsame:GenerationGen2             -0.66231    0.44372   -1.49    0.136
## Clause_typeconjoined:SexF                  -0.65421    0.41668   -1.57    0.116
## Clause_typeconjoined:GenerationGen1         0.00526    0.57641    0.01    0.993
## Clause_typeconjoined:GenerationGen2        -0.23878    0.44030   -0.54    0.588
## Preverbal_content_binaryyes:SexF            0.19018    0.51458    0.37    0.712
## Preverbal_content_binaryyes:GenerationGen1 -1.40485    0.66352   -2.12    0.034
## Preverbal_content_binaryyes:GenerationGen2  0.39840    0.57408    0.69    0.488
##                                               
## (Intercept)                                ***
## Personsecond                                  
## Personthird                                .  
## Numberpl                                      
## Switch_discsame                               
## Clause_typeconjoined                       *  
## Preverbal_content_binaryyes                   
## SexF                                          
## GenerationGen1                             *  
## GenerationGen2                                
## Personsecond:SexF                             
## Personthird:SexF                              
## Personsecond:GenerationGen1                   
## Personthird:GenerationGen1                    
## Personsecond:GenerationGen2                   
## Personthird:GenerationGen2                    
## Numberpl:SexF                              .  
## Numberpl:GenerationGen1                       
## Numberpl:GenerationGen2                    .  
## Switch_discsame:SexF                          
## Switch_discsame:GenerationGen1                
## Switch_discsame:GenerationGen2                
## Clause_typeconjoined:SexF                     
## Clause_typeconjoined:GenerationGen1           
## Clause_typeconjoined:GenerationGen2           
## Preverbal_content_binaryyes:SexF              
## Preverbal_content_binaryyes:GenerationGen1 *  
## Preverbal_content_binaryyes:GenerationGen2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 4 columns / coefficients

##Interactions for Polish

interactions_polish <- glmer (Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                               #   Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                   Person*Sex +
                                   Person*Generation +
                                   Number*Sex +
                                   Number*Generation +
                                   Grammatical_gender*Sex +
                                   Grammatical_gender*Generation +
                               #    Tense*Sex +
                                #   Tense*Generation +
                                   Switch_disc*Sex +
                                   Switch_disc*Generation +
                                   Clause_type*Sex +
                                   Clause_type*Generation +
                                   Preverbal_content_binary*Sex +
                                 Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = polishdata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(interactions_polish, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Sex + Generation +  
##     Person * Sex + Person * Generation + Number * Sex + Number *  
##     Generation + Grammatical_gender * Sex + Grammatical_gender *  
##     Generation + Switch_disc * Sex + Switch_disc * Generation +  
##     Clause_type * Sex + Clause_type * Generation + Preverbal_content_binary *  
##     Sex + Preverbal_content_binary * Generation + (1 | Speaker)
##    Data: polishdata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      510      653     -221      442      452 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.719 -0.515 -0.339  0.000  4.183 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.627    0.792   
## Number of obs: 486, groups:  Speaker, 15
## 
## Fixed effects:
##                                             Estimate Std. Error z value
## (Intercept)                                -1.60e+01   5.70e+01   -0.28
## Personsecond                               -1.68e+00   1.28e+00   -1.31
## Personthird                                 1.95e+00   1.24e+00    1.57
## Numberpl                                   -7.00e-01   1.28e+00   -0.55
## Grammatical_genderM                        -1.72e+00   1.62e+00   -1.06
## Switch_discdifferent                        1.58e+01   5.70e+01    0.28
## Switch_discsame                             1.43e+01   5.70e+01    0.25
## Clause_typeconjoined                       -7.26e-01   1.36e+00   -0.53
## Preverbal_content_binaryyes                 1.40e-01   1.81e+00    0.08
## SexF                                       -1.27e+00   1.70e+00   -0.74
## GenerationGen1                             -1.72e+01   1.30e+02   -0.13
## GenerationGen2                             -2.91e-01   8.04e+01    0.00
## Personsecond:SexF                           2.32e+00   1.63e+00    1.42
## Personthird:SexF                            2.40e-01   9.95e-01    0.24
## Personsecond:GenerationGen1                 3.72e+00   1.64e+00    2.27
## Personthird:GenerationGen1                 -1.35e+00   1.17e+00   -1.16
## Personthird:GenerationGen2                 -2.01e+00   1.19e+00   -1.69
## Numberpl:SexF                              -2.39e-01   1.02e+00   -0.23
## Numberpl:GenerationGen1                     6.79e-01   1.27e+00    0.54
## Numberpl:GenerationGen2                     3.06e-01   1.19e+00    0.26
## Grammatical_genderM:SexF                    7.96e-01   1.42e+00    0.56
## Grammatical_genderM:GenerationGen1          9.36e-01   1.53e+00    0.61
## Grammatical_genderM:GenerationGen2          5.74e-01   1.23e+00    0.47
## Switch_discdifferent:SexF                   4.80e-01   6.59e-01    0.73
## Switch_discdifferent:GenerationGen1        -3.67e-01   9.16e-01   -0.40
## Switch_discdifferent:GenerationGen2         1.56e+00   8.04e+01    0.02
## Switch_discsame:GenerationGen2              2.49e+00   8.04e+01    0.03
## Clause_typeconjoined:SexF                   4.79e-01   1.09e+00    0.44
## Clause_typeconjoined:GenerationGen1         1.80e+01   1.30e+02    0.14
## Clause_typeconjoined:GenerationGen2        -2.35e-01   1.16e+00   -0.20
## Preverbal_content_binaryyes:SexF           -4.73e-04   1.28e+00    0.00
## Preverbal_content_binaryyes:GenerationGen1 -2.28e-01   1.95e+00   -0.12
## Preverbal_content_binaryyes:GenerationGen2  2.60e-01   1.53e+00    0.17
##                                            Pr(>|z|)  
## (Intercept)                                   0.779  
## Personsecond                                  0.190  
## Personthird                                   0.117  
## Numberpl                                      0.585  
## Grammatical_genderM                           0.290  
## Switch_discdifferent                          0.782  
## Switch_discsame                               0.802  
## Clause_typeconjoined                          0.593  
## Preverbal_content_binaryyes                   0.938  
## SexF                                          0.456  
## GenerationGen1                                0.895  
## GenerationGen2                                0.997  
## Personsecond:SexF                             0.155  
## Personthird:SexF                              0.809  
## Personsecond:GenerationGen1                   0.023 *
## Personthird:GenerationGen1                    0.246  
## Personthird:GenerationGen2                    0.090 .
## Numberpl:SexF                                 0.814  
## Numberpl:GenerationGen1                       0.592  
## Numberpl:GenerationGen2                       0.797  
## Grammatical_genderM:SexF                      0.574  
## Grammatical_genderM:GenerationGen1            0.540  
## Grammatical_genderM:GenerationGen2            0.641  
## Switch_discdifferent:SexF                     0.467  
## Switch_discdifferent:GenerationGen1           0.689  
## Switch_discdifferent:GenerationGen2           0.985  
## Switch_discsame:GenerationGen2                0.975  
## Clause_typeconjoined:SexF                     0.660  
## Clause_typeconjoined:GenerationGen1           0.890  
## Clause_typeconjoined:GenerationGen2           0.840  
## Preverbal_content_binaryyes:SexF              1.000  
## Preverbal_content_binaryyes:GenerationGen1    0.907  
## Preverbal_content_binaryyes:GenerationGen2    0.866  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

##Interactions for Ukrainian

interactions_ukrainian <- glmer (Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                               #   Preverbal_content_binary +
                                   Sex +
                                  Generation +
                                   Person*Sex +
                                   Person*Generation +
                                   Number*Sex +
                                   Number*Generation +
                                   Grammatical_gender*Sex +
                                   Grammatical_gender*Generation +
                                   Tense*Sex +
                                   Tense*Generation +
                                   Switch_disc*Sex +
                                   Switch_disc*Generation +
                                   Clause_type*Sex +
                                   Clause_type*Generation +
                             #      Preverbal_content_binary*Sex +
                              #   Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = ukrainiandata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## boundary (singular) fit: see help('isSingular')
summary(interactions_ukrainian, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Grammatical_gender + Tense + Switch_disc +  
##     Clause_type + Sex + Generation + Person * Sex + Person *  
##     Generation + Number * Sex + Number * Generation + Grammatical_gender *  
##     Sex + Grammatical_gender * Generation + Tense * Sex + Tense *  
##     Generation + Switch_disc * Sex + Switch_disc * Generation +  
##     Clause_type * Sex + Clause_type * Generation + (1 | Speaker)
##    Data: ukrainiandata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      292      448     -103      206      234 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -6.428  0.000  0.252  0.494  2.266 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 277, groups:  Speaker, 12
## 
## Fixed effects:
##                                          Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                              2.26e+01   1.08e+04    0.00     1.00  
## Personsecond                            -1.90e+01   1.98e+04    0.00     1.00  
## Personthird                              4.38e-01   8.74e-01    0.50     0.62  
## Numberpl                                 2.30e+01   2.92e+04    0.00     1.00  
## Grammatical_genderM                     -2.00e+01   1.08e+04    0.00     1.00  
## Grammatical_genderOther                 -1.73e+00   2.26e+04    0.00     1.00  
## Grammatical_genderplural                -4.36e+01   3.12e+04    0.00     1.00  
## Tensenon-past                           -1.42e+00   1.03e+00   -1.38     0.17  
## Switch_discsame                         -1.15e+00   7.74e-01   -1.49     0.14  
## Clause_typeconjoined                     1.11e+00   1.04e+00    1.07     0.28  
## Clause_typesubordinate                   6.96e-01   1.01e+00    0.69     0.49  
## SexF                                    -1.91e+01   1.08e+04    0.00     1.00  
## GenerationGen1                          -1.87e+00   1.43e+00   -1.31     0.19  
## GenerationGen2                          -2.61e-01   1.54e+00   -0.17     0.87  
## Personsecond:SexF                        1.72e+01   1.98e+04    0.00     1.00  
## Personthird:SexF                        -1.19e+00   1.03e+00   -1.16     0.25  
## Personsecond:GenerationGen1              1.45e+00   3.27e+00    0.44     0.66  
## Personthird:GenerationGen1               1.74e-01   1.37e+00    0.13     0.90  
## Personsecond:GenerationGen2              3.28e-02   2.00e+00    0.02     0.99  
## Personthird:GenerationGen2              -1.68e+00   1.14e+00   -1.47     0.14  
## Numberpl:SexF                           -3.97e+00   4.13e+04    0.00     1.00  
## Numberpl:GenerationGen1                 -2.87e-01   3.55e+04    0.00     1.00  
## Numberpl:GenerationGen2                 -5.50e+00   4.13e+04    0.00     1.00  
## Grammatical_genderM:SexF                 3.75e+01   1.27e+04    0.00     1.00  
## Grammatical_genderOther:SexF             2.34e+00   2.26e+04    0.00     1.00  
## Grammatical_genderplural:SexF            2.47e+01   4.27e+04    0.00     1.00  
## Grammatical_genderM:GenerationGen1       2.09e+01   5.25e+03    0.00     1.00  
## Grammatical_genderOther:GenerationGen1   4.65e-01   2.26e+00    0.21     0.84  
## Grammatical_genderplural:GenerationGen1  2.29e-01   3.55e+04    0.00     1.00  
## Grammatical_genderM:GenerationGen2       6.24e-01   1.40e+00    0.45     0.66  
## Grammatical_genderplural:GenerationGen2  4.91e+00   4.13e+04    0.00     1.00  
## Tensenon-past:SexF                       5.39e-01   1.05e+00    0.51     0.61  
## Tensenon-past:GenerationGen1             1.11e+00   1.24e+00    0.89     0.37  
## Tensenon-past:GenerationGen2             3.17e-01   1.22e+00    0.26     0.79  
## Switch_discsame:SexF                     1.22e+00   9.96e-01    1.23     0.22  
## Switch_discsame:GenerationGen1          -1.42e+00   1.15e+00   -1.23     0.22  
## Switch_discsame:GenerationGen2          -5.07e-01   1.04e+00   -0.49     0.63  
## Clause_typeconjoined:SexF               -2.28e+00   9.79e-01   -2.33     0.02 *
## Clause_typesubordinate:SexF             -4.30e-01   1.59e+00   -0.27     0.79  
## Clause_typeconjoined:GenerationGen1     -9.10e-01   1.34e+00   -0.68     0.50  
## Clause_typesubordinate:GenerationGen1    7.82e-01   1.55e+00    0.50     0.61  
## Clause_typeconjoined:GenerationGen2     -2.51e-01   1.17e+00   -0.22     0.83  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

#Subsetting the data for Homeland

cantonesehomelanddata <- subset(prodropdata, Language =="Cantonese" & Generation =="Homeland")
faetarhomelanddata <- subset(prodropdata, Language =="Faetar" & Generation =="Homeland")
italianhomelanddata <- subset(prodropdata, Language =="Italian" & Generation =="Homeland") 
koreanhomelanddata <- subset(prodropdata, Language =="Korean" & Generation =="Homeland")
polishhomelanddata <- subset(prodropdata, Language =="Polish"& Generation =="Homeland")
ukrainianhomelanddata <- subset(prodropdata, Language =="Ukrainian"& Generation =="Homeland")

#Models for homeland speakers

#Main effects for homeland speakers

##Cantonese

main_effects_cant_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  #Preverbal_content_binary +
                                  Sex +
                                  Age +
                   (1|Speaker),
                    data = cantonesehomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effects_cant_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + Age + (1 | Speaker)
##    Data: cantonesehomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      774      824     -376      752      679 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -6.891 -0.734  0.355  0.620  2.629 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.754    0.868   
## Number of obs: 690, groups:  Speaker, 8
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            2.1382     0.9323    2.29   0.0218 *  
## Personsecond           1.4735     0.3377    4.36  1.3e-05 ***
## Personthird            0.7443     0.2282    3.26   0.0011 ** 
## Numberpl              -0.7616     0.2382   -3.20   0.0014 ** 
## Tensenonpresent       -0.6677     0.2116   -3.16   0.0016 ** 
## Tenseother            -1.8962     1.1736   -1.62   0.1061    
## Switch_discsame       -1.1133     0.1957   -5.69  1.3e-08 ***
## Clause_typeconjoined  -0.6642     0.2618   -2.54   0.0112 *  
## SexF                  -0.2784     0.7504   -0.37   0.7107    
## Age                   -0.0161     0.0163   -0.98   0.3252    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Faetar

main_effects_faet_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  #Clause_type +
                                  #Switch_disc +
                                  Preverbal_content_binary +
                                  Sex +
                                  Age +
                   (1|Speaker),
                    data = faetarhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
summary(main_effects_faet_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Preverbal_content_binary +  
##     Sex + Age + (1 | Speaker)
##    Data: faetarhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      399      439     -191      381      602 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.535 -0.347 -0.333 -0.214  5.654 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 611, groups:  Speaker, 6
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  -5.5590     1.5395   -3.61  0.00031 ***
## Personsecond                  4.5232     1.1686    3.87  0.00011 ***
## Personthird                  -0.1185     0.4222   -0.28  0.77903    
## Numberpl                     -0.0419     0.3520   -0.12  0.90533    
## Tensenonpresent               0.4997     0.3954    1.26  0.20628    
## Preverbal_content_binaryyes   0.7856     0.3265    2.41  0.01614 *  
## SexF                          0.8454     0.6710    1.26  0.20772    
## Age                           0.0463     0.0195    2.37  0.01775 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Italian

main_effects_ital_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                #  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Age +
                   (1|Speaker),
                    data = italianhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effects_ital_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + Age + (1 | Speaker)
##    Data: italianhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      718      773     -347      694      736 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.221 -0.535 -0.345 -0.169  6.587 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.384    0.62    
## Number of obs: 748, groups:  Speaker, 16
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 -0.66395    0.51571   -1.29   0.1979    
## Personsecond                -0.97060    0.34430   -2.82   0.0048 ** 
## Personthird                 -1.13186    0.28158   -4.02  5.8e-05 ***
## Numberpl                    -1.08471    0.25509   -4.25  2.1e-05 ***
## Tensenonpresent              0.50410    0.21432    2.35   0.0187 *  
## Tenseother                  -0.38563    0.61580   -0.63   0.5312    
## Switch_discsame             -1.03513    0.23863   -4.34  1.4e-05 ***
## Clause_typeconjoined        -0.36879    0.28091   -1.31   0.1892    
## Preverbal_content_binaryyes  0.12379    0.24533    0.50   0.6138    
## SexF                         0.22071    0.40182    0.55   0.5828    
## Age                          0.00644    0.01063    0.61   0.5445    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Korean

main_effects_kor_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  #Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Age +
                   (1|Speaker),
                    data = koreanhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## boundary (singular) fit: see help('isSingular')
summary(main_effects_kor_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Switch_disc + Clause_type + Preverbal_content_binary +  
##     Sex + Age + (1 | Speaker)
##    Data: koreanhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      336      375     -158      316      361 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.763 -0.561 -0.370 -0.191  6.071 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 371, groups:  Speaker, 6
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 -2.718770   0.653316   -4.16  3.2e-05 ***
## Personsecond                -0.891798   0.566142   -1.58   0.1152    
## Personthird                 -1.943190   0.749663   -2.59   0.0095 ** 
## Numberpl                     0.073692   0.513145    0.14   0.8858    
## Switch_discsame             -0.011914   0.299463   -0.04   0.9683    
## Clause_typemain             -0.518120   0.292333   -1.77   0.0763 .  
## Preverbal_content_binaryyes  0.737078   0.394957    1.87   0.0620 .  
## SexF                         1.353460   0.424660    3.19   0.0014 ** 
## Age                          0.000226   0.009068    0.02   0.9801    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Polish

main_effects_polish_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                             #     Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  #Sex +
                                  Age +
                   (1|Speaker),
                    data = polishhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
summary(main_effects_polish_homeland, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Age + (1 | Speaker)
##    Data: polishhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      116      146      -47       94      108 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.880 -0.497 -0.278 -0.074  3.995 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 119, groups:  Speaker, 2
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                  -15.8871  1694.1170   -0.01   0.9925   
## Personsecond                   0.5835     1.0087    0.58   0.5630   
## Personthird                    2.1131     0.7411    2.85   0.0044 **
## Numberpl                      -0.9698     0.7868   -1.23   0.2177   
## Grammatical_genderM           -0.7406     0.8351   -0.89   0.3752   
## Switch_discdifferent          14.0647  1694.1171    0.01   0.9934   
## Switch_discsame               12.1452  1694.1172    0.01   0.9943   
## Clause_typeconjoined          -0.2915     0.8155   -0.36   0.7207   
## Preverbal_content_binaryyes    0.1730     1.2708    0.14   0.8917   
## Age                            0.0287     0.0264    1.09   0.2761   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Ukrainian

main_effects_ukrainian_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                             #     Preverbal_content_binary +
                                  Sex +
                                  Age +
                   (1|Speaker),
                    data = ukrainianhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## boundary (singular) fit: see help('isSingular')
summary(main_effects_ukrainian_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Grammatical_gender + Tense + Switch_disc +  
##     Clause_type + Sex + Age + (1 | Speaker)
##    Data: ukrainianhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##       92      128      -32       64       85 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -6.618  0.104  0.222  0.331  1.257 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 99, groups:  Speaker, 4
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               2.02e+01   3.74e+02    0.05    0.957  
## Personsecond             -1.83e+01   3.74e+02   -0.05    0.961  
## Personthird               5.21e-01   8.02e-01    0.65    0.516  
## Numberpl                  2.04e+01   6.11e+02    0.03    0.973  
## Grammatical_genderF      -1.76e+01   3.74e+02   -0.05    0.962  
## Grammatical_genderM      -1.74e+01   3.74e+02   -0.05    0.963  
## Grammatical_genderplural -3.86e+01   6.30e+02   -0.06    0.951  
## Tensenon-past            -1.05e+00   9.12e-01   -1.15    0.250  
## Switch_discsame          -7.99e-01   7.29e-01   -1.09    0.274  
## Clause_typemain          -5.15e-01   1.03e+00   -0.50    0.617  
## Clause_typesubordinate    1.90e-01   1.32e+00    0.14    0.886  
## SexF                      2.01e+00   1.14e+00    1.77    0.077 .
## Age                      -2.16e-04   1.62e-02   -0.01    0.989  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Interactions for homeland speakers only

##Cantonese

interactions_cant_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  #Preverbal_content_binary +
                                  Sex +
                                  Age +
                                  Person*Sex +
                                  Person*Age +
                                  Number*Sex +
                                  Number*Age +
                                  #Grammatical_gender*Sex +
                                  #Grammatical_gender*Age +
                                  Tense*Sex +
                                  Tense*Age +
                                  Switch_disc*Sex +
                                  Switch_disc*Age +
                                  Clause_type*Sex +
                                  Clause_type*Age +
                                  #Preverbal_content_binary*Sex +
                                  #Preverbal_content_binary*Age +
                   (1|Speaker),
                    data = cantonesehomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function
## evaluations exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0235932 (tol = 0.002, component 1)
summary(interactions_cant_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + Age + Person * Sex + Person * Age + Number * Sex +  
##     Number * Age + Tense * Sex + Tense * Age + Switch_disc *  
##     Sex + Switch_disc * Age + Clause_type * Sex + Clause_type *  
##     Age + (1 | Speaker)
##    Data: cantonesehomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      770      879     -361      722      666 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -7.590 -0.702  0.326  0.579  3.735 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.767    0.876   
## Number of obs: 690, groups:  Speaker, 8
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                1.53355    1.06777    1.44  0.15094    
## Personsecond               1.74847    0.93958    1.86  0.06276 .  
## Personthird               -0.17279    0.74434   -0.23  0.81643    
## Numberpl                   1.00625    0.70711    1.42  0.15472    
## Tensenonpresent           -1.08962    0.65225   -1.67  0.09481 .  
## Tenseother                -0.05319    3.91927   -0.01  0.98917    
## Switch_discsame            0.12485    0.59421    0.21  0.83358    
## Clause_typeconjoined      -2.97005    0.81782   -3.63  0.00028 ***
## SexF                       0.33263    0.86401    0.38  0.70025    
## Age                       -0.00958    0.01905   -0.50  0.61501    
## Personsecond:SexF         -1.17891    0.68863   -1.71  0.08690 .  
## Personthird:SexF           0.10651    0.62571    0.17  0.86483    
## Personsecond:Age           0.00907    0.01691    0.54  0.59179    
## Personthird:Age            0.02372    0.01202    1.97  0.04843 *  
## Numberpl:SexF             -0.90719    0.62995   -1.44  0.14984    
## Numberpl:Age              -0.02971    0.01235   -2.41  0.01609 *  
## Tensenonpresent:SexF       0.23874    0.52487    0.45  0.64921    
## Tensenonpresent:Age        0.00290    0.01114    0.26  0.79426    
## Tenseother:Age            -0.07714    0.14802   -0.52  0.60227    
## Switch_discsame:SexF      -0.92195    0.47644   -1.94  0.05298 .  
## Switch_discsame:Age       -0.01779    0.01058   -1.68  0.09261 .  
## Clause_typeconjoined:SexF  2.15933    0.74395    2.90  0.00370 ** 
## Clause_typeconjoined:Age   0.01753    0.01558    1.13  0.26053    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## optimizer (bobyqa) convergence code: 1 (bobyqa -- maximum number of function evaluations exceeded)
## Model failed to converge with max|grad| = 0.0235932 (tol = 0.002, component 1)

##Faetar

interactions_faet_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                 # Grammatical_gender +
                                 # Tense +
                                #  Switch_disc +
                                  #Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Age +
                                  Person*Sex +
                                  Person*Age +
                                  Number*Sex +
                                  Number*Age +
                                #  Grammatical_gender*Sex +
                                #  Grammatical_gender*Age +
                                #  Tense*Sex +
                                 # Tense*Age +
                               #   Switch_disc*Sex +
                                #  Switch_disc*Age +
                                  #Clause_type*Sex +
                                  #Clause_type*Age +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*Age +
                   (1|Speaker),
                    data = faetarhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
summary(interactions_faet_homeland, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Preverbal_content_binary + Sex +  
##     Age + Person * Sex + Person * Age + Number * Sex + Number *  
##     Age + Preverbal_content_binary * Sex + Preverbal_content_binary *  
##     Age + (1 | Speaker)
##    Data: faetarhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      403      474     -185      371      595 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.010 -0.355 -0.351 -0.203  4.922 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 611, groups:  Speaker, 6
## 
## Fixed effects:
##                                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)                       1.21e+00   5.24e+00    0.23     0.82
## Personsecond                      1.43e+02   7.56e+04    0.00     1.00
## Personthird                      -7.37e+00   5.50e+00   -1.34     0.18
## Numberpl                         -7.60e+01   1.68e+04    0.00     1.00
## Preverbal_content_binaryyes       1.92e+00   5.62e+00    0.34     0.73
## SexF                             -7.77e-01   2.87e+00   -0.27     0.79
## Age                              -4.77e-02   6.91e-02   -0.69     0.49
## Personsecond:SexF                -3.29e+01   3.99e+04    0.00     1.00
## Personthird:SexF                  1.87e+00   2.94e+00    0.64     0.53
## Personsecond:Age                 -1.80e+00   9.82e+02    0.00     1.00
## Personthird:Age                   1.01e-01   7.25e-02    1.39     0.16
## Numberpl:SexF                     1.97e+01   4.59e+03    0.00     1.00
## Numberpl:Age                      9.93e-01   2.18e+02    0.00     1.00
## Preverbal_content_binaryyes:SexF -5.37e-01   2.59e+00   -0.21     0.84
## Preverbal_content_binaryyes:Age  -1.39e-02   7.35e-02   -0.19     0.85
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Italian

interactions_ital_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                            #      Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Age +
                                  Person*Sex +
                                  Person*Age +
                                  Number*Sex +
                                  Number*Age +
                                  # Grammatical_gender*Sex +
                                  # Grammatical_gender*Age +
                                  Tense*Sex +
                                  Tense*Age +
                                  Switch_disc*Sex +
                                  Switch_disc*Age +
                                  Clause_type*Sex +
                                  Clause_type*Age +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*Age +
                   (1|Speaker),
                    data = italianhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function
## evaluations exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0102275 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(interactions_ital_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + Age + Person * Sex + Person *  
##     Age + Number * Sex + Number * Age + Tense * Sex + Tense *  
##     Age + Switch_disc * Sex + Switch_disc * Age + Clause_type *  
##     Sex + Clause_type * Age + Preverbal_content_binary * Sex +  
##     Preverbal_content_binary * Age + (1 | Speaker)
##    Data: italianhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      724      853     -334      668      720 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.799 -0.523 -0.330 -0.123  5.360 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.353    0.594   
## Number of obs: 748, groups:  Speaker, 16
## 
## Fixed effects:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.673054   0.683936   -2.45    0.014 *
## Personsecond                      1.540557   1.177995    1.31    0.191  
## Personthird                      -0.439591   0.704819   -0.62    0.533  
## Numberpl                         -0.303432   0.642874   -0.47    0.637  
## Tensenonpresent                   0.277553   0.571659    0.49    0.627  
## Tenseother                        6.496195   5.735635    1.13    0.257  
## Switch_discsame                  -0.312280   0.589242   -0.53    0.596  
## Clause_typeconjoined              0.851596   0.700352    1.22    0.224  
## Preverbal_content_binaryyes       0.533462   0.723919    0.74    0.461  
## SexF                              0.209640   0.545790    0.38    0.701  
## Age                               0.035260   0.014775    2.39    0.017 *
## Personsecond:SexF                -1.025767   0.817724   -1.25    0.210  
## Personthird:SexF                 -0.648793   0.650343   -1.00    0.318  
## Personsecond:Age                 -0.058308   0.026321   -2.22    0.027 *
## Personthird:Age                  -0.016204   0.015015   -1.08    0.281  
## Numberpl:SexF                     0.224786   0.562311    0.40    0.689  
## Numberpl:Age                     -0.025705   0.014923   -1.72    0.085 .
## Tensenonpresent:SexF              1.036277   0.492795    2.10    0.035 *
## Tenseother:SexF                   4.051173   3.253541    1.25    0.213  
## Tensenonpresent:Age              -0.000772   0.012466   -0.06    0.951  
## Tenseother:Age                   -0.430394   0.369777   -1.16    0.244  
## Switch_discsame:SexF             -0.105612   0.490603   -0.22    0.830  
## Switch_discsame:Age              -0.018876   0.013039   -1.45    0.148  
## Clause_typeconjoined:SexF        -1.350123   0.723852   -1.87    0.062 .
## Clause_typeconjoined:Age         -0.023495   0.015525   -1.51    0.130  
## Preverbal_content_binaryyes:SexF -0.057012   0.550820   -0.10    0.918  
## Preverbal_content_binaryyes:Age  -0.010597   0.015352   -0.69    0.490  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 1 (bobyqa -- maximum number of function evaluations exceeded)
## Model failed to converge with max|grad| = 0.0102275 (tol = 0.002, component 1)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

##Korean

interactions_kor_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  #Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Age +
                   (1|Speaker),
                    data = koreanhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## boundary (singular) fit: see help('isSingular')
summary(interactions_kor_homeland, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Switch_disc + Clause_type + Preverbal_content_binary +  
##     Sex + Age + (1 | Speaker)
##    Data: koreanhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      336      375     -158      316      361 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.763 -0.561 -0.370 -0.191  6.071 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 371, groups:  Speaker, 6
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 -2.718770   0.653316   -4.16  3.2e-05 ***
## Personsecond                -0.891798   0.566142   -1.58   0.1152    
## Personthird                 -1.943190   0.749663   -2.59   0.0095 ** 
## Numberpl                     0.073692   0.513145    0.14   0.8858    
## Switch_discsame             -0.011914   0.299463   -0.04   0.9683    
## Clause_typemain             -0.518120   0.292333   -1.77   0.0763 .  
## Preverbal_content_binaryyes  0.737078   0.394957    1.87   0.0620 .  
## SexF                         1.353460   0.424660    3.19   0.0014 ** 
## Age                          0.000226   0.009068    0.02   0.9801    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Polish

interactions_polish_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                 # Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  #Sex +
                                  #Age +
                                  #Person*Sex +
                                  Person*Age +
                                  #Number*Sex +
                                  Number*Age +
                                  #Grammatical_gender*Sex +
                                  Grammatical_gender*Age +
                                  #Tense*Sex +
                                #  Tense*Age +
                                  #Switch_disc*Sex +
                                  Switch_disc*Age +
                                  #Clause_type*Sex +
                                  Clause_type*Age +
                                  #Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*Age +
                   (1|Speaker),
                    data = polishhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## boundary (singular) fit: see help('isSingular')
summary(interactions_polish_homeland, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Person * Age + Number *  
##     Age + Grammatical_gender * Age + Switch_disc * Age + Clause_type *  
##     Age + Preverbal_content_binary * Age + (1 | Speaker)
##    Data: polishhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      123      170      -44       89      102 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.120 -0.478 -0.249  0.000  4.844 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 119, groups:  Speaker, 2
## 
## Fixed effects:
##                                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)                     -1.87e+01   7.60e+03    0.00     1.00
## Personsecond                     5.37e-01   1.08e+00    0.50     0.62
## Personthird                      2.72e+01   4.60e+03    0.01     1.00
## Numberpl                         1.48e+00   2.52e+00    0.59     0.56
## Grammatical_genderM             -2.50e+01   4.60e+03   -0.01     1.00
## Switch_discdifferent             1.50e+01   7.60e+03    0.00     1.00
## Switch_discsame                  1.53e+01   7.60e+03    0.00     1.00
## Clause_typeconjoined            -5.38e-02   2.26e+00   -0.02     0.98
## Preverbal_content_binaryyes     -2.45e+01   9.06e+03    0.00     1.00
## Age                              1.24e-02   7.51e-02    0.17     0.87
## Personthird:Age                 -5.70e-01   1.05e+02   -0.01     1.00
## Numberpl:Age                    -5.85e-02   6.68e-02   -0.88     0.38
## Grammatical_genderM:Age          5.45e-01   1.05e+02    0.01     1.00
## Switch_discdifferent:Age         6.58e-02   4.48e-02    1.47     0.14
## Clause_typeconjoined:Age        -6.66e-03   6.30e-02   -0.11     0.92
## Preverbal_content_binaryyes:Age  5.75e-01   2.06e+02    0.00     1.00
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Ukrainian

interactions_ukrainian_homeland <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                 # Preverbal_content_binary +
                                  Sex +
                                  Age +
                                  Person*Sex +
                                  Person*Age +
                                  Number*Sex +
                                  Number*Age +
                                  Grammatical_gender*Sex +
                                  Grammatical_gender*Age +
                                  Tense*Sex +
                                  Tense*Age +
                                  Switch_disc*Sex +
                                  Switch_disc*Age +
                                  Clause_type*Sex +
                                  Clause_type*Age +
                                  #Preverbal_content_binary*Sex +
                                  #Preverbal_content_binary*Age +
                   (1|Speaker),
                    data = ukrainianhomelanddata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 8 columns / coefficients
## boundary (singular) fit: see help('isSingular')
summary(interactions_ukrainian_homeland, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Grammatical_gender + Tense + Switch_disc +  
##     Clause_type + Sex + Age + Person * Sex + Person * Age + Number *  
##     Sex + Number * Age + Grammatical_gender * Sex + Grammatical_gender *  
##     Age + Tense * Sex + Tense * Age + Switch_disc * Sex + Switch_disc *  
##     Age + Clause_type * Sex + Clause_type * Age + (1 | Speaker)
##    Data: ukrainianhomelanddata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##       95      170      -19       37       70 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6344  0.0000  0.0000  0.0001  1.4169 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 99, groups:  Speaker, 4
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  6.16e+01   3.97e+04       0        1
## Personsecond                -6.16e+01   3.98e+04       0        1
## Personthird                  6.70e+00   6.24e+03       0        1
## Numberpl                     4.76e+01   5.20e+04       0        1
## Grammatical_genderF          1.74e+02   4.96e+04       0        1
## Grammatical_genderM         -2.01e+01   2.84e+04       0        1
## Grammatical_genderplural    -6.04e+01   5.80e+04       0        1
## Tensenon-past               -2.49e+01   1.40e+04       0        1
## Switch_discsame             -2.87e+01   2.14e+04       0        1
## Clause_typemain             -2.08e+00   9.66e+03       0        1
## Clause_typesubordinate      -6.32e+00   3.04e+04       0        1
## SexF                         3.35e+01   3.06e+04       0        1
## Age                         -6.55e-03   6.71e+02       0        1
## Personsecond:SexF           -1.46e+01   7.54e+04       0        1
## Personthird:SexF            -2.81e+00   1.56e+04       0        1
## Personthird:Age             -3.31e-01   3.47e+02       0        1
## Numberpl:SexF               -1.10e+01   2.30e+04       0        1
## Numberpl:Age                -3.22e-01   2.30e+02       0        1
## Grammatical_genderF:SexF    -9.48e+01   2.73e+04       0        1
## Grammatical_genderF:Age     -2.30e+00   5.05e+02       0        1
## Tensenon-past:SexF          -9.33e+00   6.18e+03       0        1
## Tensenon-past:Age            3.04e-01   1.64e+02       0        1
## Switch_discsame:SexF        -1.06e+01   9.69e+03       0        1
## Switch_discsame:Age          3.54e-01   2.52e+02       0        1
## Clause_typemain:SexF         2.81e+00   2.31e+04       0        1
## Clause_typesubordinate:SexF  2.13e+01   2.80e+04       0        1
## Clause_typemain:Age          1.55e-02   5.37e+02       0        1
## Clause_typesubordinate:Age   7.30e-02   6.35e+02       0        1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 8 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Models for heritage speakers only

##Subsetting heritage data for each language

cantoneseheritagedata <- subset (prodropdata, Language =="Cantonese" & (Generation =="Gen1" | Generation == "Gen2")) 
faetarheritagedata <- subset(prodropdata, Language =="Faetar" & (Generation =="Gen1" | Generation == "Gen2"))
italianheritagedata <- subset(prodropdata, Language =="Italian" & (Generation =="Gen1" | Generation == "Gen2"))
koreanheritagedata <- subset(prodropdata, Language =="Korean" & (Generation =="Gen1" | Generation == "Gen2"))
polishheritagedata <- subset(prodropdata, Language == "Polish" & (Generation =="Gen1" | Generation == "Gen2"))
ukrainianheritagedata <- subset(prodropdata, Language == "Polish" & (Generation =="Gen1" | Generation == "Gen2"))

##Levels for heritage data

cantoneseheritagedata <- cantoneseheritagedata %>% mutate(Generation = fct_relevel(Generation, 'Gen1', 'Gen2'),
                              Prodrop = fct_relevel(Prodrop, 'Null', 'Overt'),
                              Person = fct_relevel(Person, 'first','second','third'),
                              Number = fct_relevel(Number, 'sg', 'pl'),
                              Tense = fct_relevel(Tense, 'present', 'nonpresent'),
                              Grammatical_gender = fct_relevel(Grammatical_gender, 'M', 'F'),
                              Switch_disc = fct_relevel(Switch_disc, 'S', 'D'),
                              Preverbal_content_binary = fct_relevel(Preverbal_content_binary, 'none', 'yes'),
                              Sex = fct_relevel(Sex, 'M', 'F'))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Switch_disc = fct_relevel(Switch_disc, "S", "D")`.
## Caused by warning:
## ! 2 unknown levels in `f`: S and D
faetarheritagedata <- faetarheritagedata %>% mutate(Generation = fct_relevel(Generation, 'Gen1', 'Gen2'),
                              Prodrop = fct_relevel(Prodrop, 'Null', 'Overt'),
                              Person = fct_relevel(Person, 'first','second','third'),
                              Number = fct_relevel(Number, 'sg', 'pl'),
                              Tense = fct_relevel(Tense, 'present', 'nonpresent'),
                              Grammatical_gender = fct_relevel(Grammatical_gender, 'M', 'F'),
                              Switch_disc = fct_relevel(Switch_disc, 'S', 'D'),
                              Preverbal_content_binary = fct_relevel(Preverbal_content_binary, 'none', 'yes'),  
                              Sex = fct_relevel(Sex, 'M', 'F'))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Switch_disc = fct_relevel(Switch_disc, "S", "D")`.
## Caused by warning:
## ! 2 unknown levels in `f`: S and D
italianheritagedata <- italianheritagedata %>% mutate(Generation = fct_relevel(Generation, 'Gen1', 'Gen2'),
                              Prodrop = fct_relevel(Prodrop, 'Null', 'Overt'),
                              Person = fct_relevel(Person, 'first','second','third'),
                              Number = fct_relevel(Number, 'sg', 'pl'),
                              Tense = fct_relevel(Tense, 'present', 'nonpresent'),
                              Grammatical_gender = fct_relevel(Grammatical_gender, 'M', 'F'),
                              Switch_disc = fct_relevel(Switch_disc, 'S', 'D'),
                              Preverbal_content_binary = fct_relevel(Preverbal_content_binary, 'none', 'yes'), 
                              Sex = fct_relevel(Sex, 'M', 'F'))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Switch_disc = fct_relevel(Switch_disc, "S", "D")`.
## Caused by warning:
## ! 2 unknown levels in `f`: S and D
koreanheritagedata <- koreanheritagedata %>% mutate(Generation = fct_relevel(Generation, 'Gen1', 'Gen2'),
                              Prodrop = fct_relevel(Prodrop, 'Null', 'Overt'),
                              Person = fct_relevel(Person, 'first','second','third'),
                              Number = fct_relevel(Number, 'sg', 'pl'),
                              Tense = fct_relevel(Tense, 'non-past', 'nonpresent'),
                              Grammatical_gender = fct_relevel(Grammatical_gender, 'M', 'F'),
                              Switch_disc = fct_relevel(Switch_disc, 'S', 'D'),
                              Clause_type = fct_relevel(Switch_disc,'main', 'conjoined'),
                              Preverbal_content_binary = fct_relevel(Preverbal_content_binary, 'none', 'yes'), 
                              Sex = fct_relevel(Sex, 'M', 'F'))
## Warning: There were 2 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `Switch_disc = fct_relevel(Switch_disc, "S", "D")`.
## Caused by warning:
## ! 2 unknown levels in `f`: S and D
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
polishheritagedata <- polishheritagedata %>% mutate(Generation = fct_relevel(Generation, 'Gen1', 'Gen2'),
                              Prodrop = fct_relevel(Prodrop, 'Null', 'Overt'),
                              Person = fct_relevel(Person, 'first','second','third'),
                              Number = fct_relevel(Number, 'sg', 'pl'),
                              Tense = fct_relevel(Tense, 'present', 'nonpresent'),
                              Grammatical_gender = fct_relevel(Grammatical_gender, 'M', 'F'),
                              Switch_disc = fct_relevel(Switch_disc, 'S', 'D'),
                              Preverbal_content_binary = fct_relevel(Preverbal_content_binary, 'none', 'yes'), 
                              Sex = fct_relevel(Sex, 'M', 'F'))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Switch_disc = fct_relevel(Switch_disc, "S", "D")`.
## Caused by warning:
## ! 2 unknown levels in `f`: S and D
ukrainianheritagedata <- ukrainianheritagedata %>% mutate(Generation = fct_relevel(Generation, 'Gen1', 'Gen2'),
                              Prodrop = fct_relevel(Prodrop, 'Null', 'Overt'),
                              Person = fct_relevel(Person, 'first','second','third'),
                              Number = fct_relevel(Number, 'sg', 'pl'),
                              Tense = fct_relevel(Tense, 'present', 'nonpresent'),
                              Grammatical_gender = fct_relevel(Grammatical_gender, 'M', 'F'),
                              Switch_disc = fct_relevel(Switch_disc, 'S', 'D'),
                              Preverbal_content_binary = fct_relevel(Preverbal_content_binary, 'none', 'yes'), 
                              Sex = fct_relevel(Sex, 'M', 'F'))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Switch_disc = fct_relevel(Switch_disc, "S", "D")`.
## Caused by warning:
## ! 2 unknown levels in `f`: S and D

##Main effects for heritage speakers

##Cantonese

main_effects_cantonese_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  #Preverbal_content_binary +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = cantoneseheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effects_cantonese_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + Generation + (1 | Speaker)
##    Data: cantoneseheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     3223     3288    -1600     3201     2767 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -5.161 -0.838  0.403  0.699  2.815 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.367    0.606   
## Number of obs: 2778, groups:  Speaker, 28
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       1.6534     0.2866    5.77  8.0e-09 ***
## Personsecond      0.9898     0.1917    5.16  2.4e-07 ***
## Personthird       0.3155     0.1037    3.04   0.0023 ** 
## Numberpl         -0.5989     0.1087   -5.51  3.6e-08 ***
## Tensenonpresent  -0.3262     0.1051   -3.10   0.0019 ** 
## Tenseother       -0.0309     0.1709   -0.18   0.8565    
## Switch_discsame  -1.0225     0.0934  -10.95  < 2e-16 ***
## Clause_typemain  -0.8812     0.1769   -4.98  6.3e-07 ***
## SexF              0.5847     0.2467    2.37   0.0178 *  
## GenerationGen2    0.2635     0.2471    1.07   0.2862    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
main_effects_cantonese_heritage_EO <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  #Preverbal_content_binary +
                                  Sex +
                                  EO_lang +
                                  EO_culture +
                   (1|Speaker),
                    data = cantoneseheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effects_cantonese_heritage_EO, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + EO_lang + EO_culture + (1 | Speaker)
##    Data: cantoneseheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     2487     2555    -1232     2463     2076 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.542 -0.826  0.387  0.731  2.974 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.348    0.589   
## Number of obs: 2088, groups:  Speaker, 21
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       1.8002     0.3132    5.75  9.0e-09 ***
## Personsecond      1.0648     0.2206    4.83  1.4e-06 ***
## Personthird       0.3041     0.1172    2.59  0.00948 ** 
## Numberpl         -0.5925     0.1221   -4.85  1.2e-06 ***
## Tensenonpresent  -0.4425     0.1213   -3.65  0.00027 ***
## Tenseother       -0.0643     0.1979   -0.32  0.74534    
## Switch_discsame  -1.0277     0.1050   -9.79  < 2e-16 ***
## Clause_typemain  -1.0556     0.2289   -4.61  4.0e-06 ***
## SexF              0.6630     0.2827    2.35  0.01899 *  
## EO_lang           0.0524     0.0857    0.61  0.54105    
## EO_culture       -0.1243     0.1792   -0.69  0.48770    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Faetar

main_effects_faetar_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                 # Tense +
                                  Switch_disc +
                                  #Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = faetarheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(main_effects_faetar_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Preverbal_content_binary + Sex + Generation + (1 | Speaker)
##    Data: faetarheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      150      188      -65      130      320 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.932 -0.256 -0.093 -0.053  4.221 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 2.06     1.43    
## Number of obs: 330, groups:  Speaker, 13
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  -0.1747     1.9255   -0.09    0.928  
## Personthird                  -2.7347     1.6695   -1.64    0.101  
## Numberpl                     -1.2231     0.9258   -1.32    0.186  
## Grammatical_genderF           0.8639     0.5404    1.60    0.110  
## Grammatical_genderOther     -17.1181   362.0406   -0.05    0.962  
## Switch_discsame              -0.0555     0.5761   -0.10    0.923  
## Preverbal_content_binaryyes  -1.5478     0.8368   -1.85    0.064 .
## SexF                         -1.8801     1.2613   -1.49    0.136  
## GenerationGen2                0.8235     1.1289    0.73    0.466  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
#No EO for FAETAR

##Italian

main_effects_italian_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                #  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = italianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effects_italian_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + Generation + (1 | Speaker)
##    Data: italianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     1024     1078     -501     1002     1027 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.622 -0.552 -0.355 -0.158  6.370 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.415    0.644   
## Number of obs: 1038, groups:  Speaker, 11
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   -0.797      0.425   -1.87   0.0611 .  
## Personsecond                   0.174      0.508    0.34   0.7324    
## Personthird                    0.607      0.209    2.91   0.0037 ** 
## Numberpl                      -1.270      0.206   -6.17  6.7e-10 ***
## Tensenonpresent               -0.278      0.168   -1.65   0.0983 .  
## Switch_discsame               -1.143      0.170   -6.72  1.8e-11 ***
## Clause_typemain                0.256      0.208    1.23   0.2183    
## Preverbal_content_binaryyes   -0.341      0.196   -1.74   0.0821 .  
## SexF                           0.775      0.455    1.70   0.0887 .  
## GenerationGen2                -0.179      0.472   -0.38   0.7050    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
main_effects_italian_heritage_EO <- glmer(Prodrop ~ Person +
                                  Number + 
                                #  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  EO_lang +
                                  EO_culture +
                   (1|Speaker),
                    data = italianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effects_italian_heritage_EO, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + EO_lang + EO_culture + (1 |      Speaker)
##    Data: italianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     1020     1080     -498      996     1026 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.659 -0.543 -0.355 -0.155  6.503 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.236    0.486   
## Number of obs: 1038, groups:  Speaker, 11
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   -0.904      0.314   -2.88   0.0040 ** 
## Personsecond                   0.195      0.508    0.38   0.7008    
## Personthird                    0.611      0.209    2.93   0.0034 ** 
## Numberpl                      -1.266      0.206   -6.15  7.5e-10 ***
## Tensenonpresent               -0.272      0.168   -1.62   0.1049    
## Switch_discsame               -1.140      0.170   -6.70  2.1e-11 ***
## Clause_typemain                0.262      0.207    1.26   0.2064    
## Preverbal_content_binaryyes   -0.337      0.196   -1.72   0.0850 .  
## SexF                           0.543      0.345    1.57   0.1153    
## EO_lang                       -0.370      0.142   -2.61   0.0089 ** 
## EO_culture                     0.032      0.181    0.18   0.8595    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Korean

## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Switch_disc + Clause_type + Preverbal_content_binary +  
##     Sex + Generation + (1 | Speaker)
##    Data: koreanheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      541      580     -262      523      576 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.133 -0.561 -0.370 -0.109 11.774 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.144    0.379   
## Number of obs: 585, groups:  Speaker, 10
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   -1.126      0.436   -2.58   0.0098 ** 
## Personsecond                  -1.960      0.633   -3.10   0.0019 ** 
## Personthird                   -3.187      0.730   -4.36  1.3e-05 ***
## Numberpl                      -0.744      0.341   -2.18   0.0290 *  
## Switch_discsame               -0.581      0.225   -2.59   0.0096 ** 
## Preverbal_content_binaryyes    0.622      0.269    2.31   0.0209 *  
## SexF                          -0.703      0.344   -2.04   0.0411 *  
## GenerationGen2                 0.418      0.379    1.10   0.2701    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## boundary (singular) fit: see help('isSingular')
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Prodrop ~ Person + Number + Switch_disc + Clause_type + Preverbal_content_binary +  
##     Sex + EO_lang + EO_culture + (1 | Speaker)
##    Data: koreanheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      264      301     -122      244      303 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.992 -0.434 -0.327 -0.205  8.200 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0        0       
## Number of obs: 313, groups:  Speaker, 6
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   -1.349      0.628   -2.15    0.032 *
## Personsecond                  -1.725      1.061   -1.63    0.104  
## Personthird                   -1.462      0.764   -1.91    0.056 .
## Numberpl                      -0.634      0.489   -1.30    0.195  
## Switch_discsame               -0.759      0.343   -2.21    0.027 *
## Preverbal_content_binaryyes    0.421      0.430    0.98    0.328  
## SexF                          -1.021      0.427   -2.39    0.017 *
## EO_lang                       -0.220      0.217   -1.02    0.310  
## EO_culture                     0.597      0.252    2.37    0.018 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Polish

main_effects_polish_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                 # Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                   (1|Speaker),
                    data = polishheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(main_effects_polish_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Sex + Generation +  
##     (1 | Speaker)
##    Data: polishheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      391      438     -184      367      355 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.185 -0.539 -0.370  0.572  4.377 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.819    0.905   
## Number of obs: 367, groups:  Speaker, 13
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                  -1.2525     0.5009   -2.50   0.0124 * 
## Personsecond                  0.4455     0.6682    0.67   0.5049   
## Personthird                   0.2798     0.3878    0.72   0.4705   
## Numberpl                     -0.1055     0.3722   -0.28   0.7769   
## Grammatical_genderF           0.6105     0.4664    1.31   0.1906   
## Switch_discOther            -15.6235   170.6667   -0.09   0.9271   
## Switch_discsame              -0.8413     0.2779   -3.03   0.0025 **
## Clause_typemain              -0.0284     0.4494   -0.06   0.9497   
## Preverbal_content_binaryyes   0.1651     0.5343    0.31   0.7573   
## SexF                          0.0619     0.7433    0.08   0.9337   
## GenerationGen2                0.3664     0.6018    0.61   0.5426   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
main_effects_polish_heritage_EO <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                                 # Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                   EO_lang +
                                  EO_culture +
                  (1|Speaker),
                    data = polishheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(main_effects_polish_heritage_EO, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Sex + EO_lang +  
##     EO_culture + (1 | Speaker)
##    Data: polishheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      351      400     -163      325      291 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.211 -0.563 -0.382  0.806  3.012 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.478    0.692   
## Number of obs: 304, groups:  Speaker, 11
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                   -1.167      0.429   -2.72   0.0065 **
## Personsecond                   0.640      0.701    0.91   0.3611   
## Personthird                    0.295      0.434    0.68   0.4966   
## Numberpl                      -0.278      0.404   -0.69   0.4909   
## Grammatical_genderF            0.442      0.522    0.85   0.3969   
## Switch_discOther             -15.552    512.000   -0.03   0.9758   
## Switch_discsame               -0.666      0.291   -2.29   0.0220 * 
## Clause_typemain                0.151      0.469    0.32   0.7477   
## Preverbal_content_binaryyes    0.109      0.544    0.20   0.8414   
## SexF                           0.632      0.877    0.72   0.4710   
## EO_lang                        0.355      0.403    0.88   0.3779   
## EO_culture                     0.210      0.183    1.15   0.2502   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

##Ukrainian

main_effects_ukrainian_heritage <- glmer(Prodrop ~ 
                                  Person +
                                   Number + 
                                   Grammatical_gender +
                                # Tense +
                                   Switch_disc +
                                   Clause_type +
                                 # # Preverbal_content_binary +
                                   Sex +
                                   Generation 
                  + (1|Speaker),
                    data = ukrainianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(main_effects_ukrainian_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Sex + Generation + (1 | Speaker)
##    Data: ukrainianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      389      432     -184      367      356 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.187 -0.543 -0.372  0.574  4.338 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.814    0.902   
## Number of obs: 367, groups:  Speaker, 13
## 
## Fixed effects:
##                     Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          -1.2479     0.4998   -2.50   0.0125 * 
## Personsecond          0.4547     0.6672    0.68   0.4956   
## Personthird           0.2763     0.3872    0.71   0.4755   
## Numberpl             -0.0991     0.3710   -0.27   0.7893   
## Grammatical_genderF   0.6029     0.4653    1.30   0.1951   
## Switch_discOther    -15.5665   228.9734   -0.07   0.9458   
## Switch_discsame      -0.8336     0.2766   -3.01   0.0026 **
## Clause_typemain      -0.0185     0.4488   -0.04   0.9671   
## SexF                  0.0691     0.7411    0.09   0.9257   
## GenerationGen2        0.3682     0.6004    0.61   0.5397   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
main_effects_ukrainian_heritage_EO <- glmer(Prodrop ~ 
                                  Person +
                                   Number + 
                                   Grammatical_gender +
                                # Tense +
                                   Switch_disc +
                                   Clause_type +
                                 # # Preverbal_content_binary +
                                   Sex +
                                   EO_lang +
                                  EO_culture +
                  + (1|Speaker),
                    data = ukrainianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
summary(main_effects_ukrainian_heritage_EO, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Sex + EO_lang + EO_culture + +(1 | Speaker)
##    Data: ukrainianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      349      394     -163      325      292 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.211 -0.565 -0.384  0.803  3.002 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.471    0.687   
## Number of obs: 304, groups:  Speaker, 11
## 
## Fixed effects:
##                     Estimate Std. Error z value Pr(>|z|)   
## (Intercept)           -1.163      0.414   -2.81    0.005 **
## Personsecond           0.648      0.691    0.94    0.349   
## Personthird            0.293      0.431    0.68    0.498   
## Numberpl              -0.274      0.401   -0.68    0.495   
## Grammatical_genderF    0.436      0.517    0.84    0.399   
## Switch_discOther     -15.469   1665.136   -0.01    0.993   
## Switch_discsame       -0.660      0.288   -2.29    0.022 * 
## Clause_typemain        0.160      0.464    0.34    0.730   
## SexF                   0.642      0.857    0.75    0.454   
## EO_lang                0.355      0.391    0.91    0.364   
## EO_culture             0.211      0.180    1.17    0.242   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (bobyqa) convergence code: 0 (OK)
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 1 negative eigenvalues

##Interactions for heritage speakers

##Cantonese

interactions_cant_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  #Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                  Person*Sex +
                                  Person*Generation +
                                  Number*Sex +
                                  Number*Generation +
                                  #Grammatical_gender*Sex +
                                  #Grammatical_gender*Generation +
                                  Tense*Sex +
                                  Tense*Generation +
                                  Switch_disc*Sex +
                                  Switch_disc*Generation +
                                  Clause_type*Sex +
                                  Clause_type*Generation +
                                  #Preverbal_content_binary*Sex +
                                  #Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = cantoneseheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(interactions_cant_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + Generation + Person * Sex + Person * Generation + Number *  
##     Sex + Number * Generation + Tense * Sex + Tense * Generation +  
##     Switch_disc * Sex + Switch_disc * Generation + Clause_type *  
##     Sex + Clause_type * Generation + (1 | Speaker)
##    Data: cantoneseheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     3216     3364    -1583     3166     2753 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -7.215 -0.802  0.406  0.685  2.908 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.396    0.629   
## Number of obs: 2778, groups:  Speaker, 28
## 
## Fixed effects:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     2.46975    0.42545    5.81  6.4e-09 ***
## Personsecond                    0.67767    0.32225    2.10  0.03547 *  
## Personthird                    -0.00686    0.17223   -0.04  0.96825    
## Numberpl                       -0.54448    0.17610   -3.09  0.00199 ** 
## Tensenonpresent                -0.62772    0.17385   -3.61  0.00031 ***
## Tenseother                     -0.44983    0.29874   -1.51  0.13213    
## Switch_discsame                -1.08507    0.15893   -6.83  8.7e-12 ***
## Clause_typemain                -1.43945    0.34054   -4.23  2.4e-05 ***
## SexF                           -0.06448    0.45978   -0.14  0.88848    
## GenerationGen2                 -0.54021    0.45731   -1.18  0.23749    
## Personsecond:SexF              -0.39683    0.38741   -1.02  0.30569    
## Personthird:SexF                0.31204    0.21352    1.46  0.14391    
## Personsecond:GenerationGen2     1.00477    0.38897    2.58  0.00979 ** 
## Personthird:GenerationGen2      0.37629    0.22076    1.70  0.08829 .  
## Numberpl:SexF                  -0.36064    0.22549   -1.60  0.10975    
## Numberpl:GenerationGen2         0.21014    0.23354    0.90  0.36823    
## Tensenonpresent:SexF            0.71480    0.21489    3.33  0.00088 ***
## Tenseother:SexF                 0.72419    0.36070    2.01  0.04467 *  
## Tensenonpresent:GenerationGen2 -0.09955    0.21586   -0.46  0.64467    
## Tenseother:GenerationGen2       0.05932    0.36217    0.16  0.86989    
## Switch_discsame:SexF           -0.06739    0.18889   -0.36  0.72128    
## Switch_discsame:GenerationGen2  0.21768    0.18960    1.15  0.25093    
## Clause_typemain:SexF            0.47885    0.36290    1.32  0.18700    
## Clause_typemain:GenerationGen2  0.50343    0.35831    1.41  0.16002    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interactions_cant_heritage_EO <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  #Preverbal_content_binary +
                                  Sex +
                                   EO_lang +
                                  EO_culture +
                                  Person*Sex +
                                  Person*EO_lang +
                                  Person*EO_culture +
                                  Number*Sex +
                                  Number*EO_lang +
                                  Number*EO_culture +
                                  #Grammatical_gender*Sex +
                                  #Grammatical_gender*Generation +
                                  Tense*Sex +
                                  Tense*EO_lang +
                                  Tense*EO_culture +
                                  Switch_disc*Sex +
                                  Switch_disc*EO_lang +
                                  Switch_disc*EO_culture +
                                  Clause_type*Sex +
                                  Clause_type*EO_lang +
                                  Clause_type*EO_culture +
                                  #Preverbal_content_binary*Sex +
                                  #Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = cantoneseheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(interactions_cant_heritage_EO, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Sex + EO_lang + EO_culture + Person * Sex + Person * EO_lang +  
##     Person * EO_culture + Number * Sex + Number * EO_lang + Number *  
##     EO_culture + Tense * Sex + Tense * EO_lang + Tense * EO_culture +  
##     Switch_disc * Sex + Switch_disc * EO_lang + Switch_disc *  
##     EO_culture + Clause_type * Sex + Clause_type * EO_lang +  
##     Clause_type * EO_culture + (1 | Speaker)
##    Data: cantoneseheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     2460     2646    -1197     2394     2055 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -5.213 -0.775  0.394  0.716  3.432 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.318    0.564   
## Number of obs: 2088, groups:  Speaker, 21
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 1.81213    0.40385    4.49  7.2e-06 ***
## Personsecond                1.51846    0.32325    4.70  2.6e-06 ***
## Personthird                 0.44099    0.18195    2.42  0.01537 *  
## Numberpl                   -0.40780    0.19488   -2.09  0.03639 *  
## Tensenonpresent            -0.80337    0.16969   -4.73  2.2e-06 ***
## Tenseother                 -0.64313    0.28564   -2.25  0.02435 *  
## Switch_discsame            -1.05514    0.15468   -6.82  9.0e-12 ***
## Clause_typemain            -1.01329    0.34712   -2.92  0.00351 ** 
## SexF                        0.51921    0.57108    0.91  0.36326    
## EO_lang                     0.04488    0.19504    0.23  0.81799    
## EO_culture                 -0.48589    0.38168   -1.27  0.20301    
## Personsecond:SexF          -0.69637    0.47762   -1.46  0.14483    
## Personthird:SexF            0.07494    0.25001    0.30  0.76436    
## Personsecond:EO_lang        0.38928    0.11746    3.31  0.00092 ***
## Personthird:EO_lang        -0.01504    0.08639   -0.17  0.86179    
## Personsecond:EO_culture     0.28154    0.34507    0.82  0.41457    
## Personthird:EO_culture      0.72273    0.17075    4.23  2.3e-05 ***
## Numberpl:SexF              -0.49956    0.25947   -1.93  0.05419 .  
## Numberpl:EO_lang            0.28630    0.08899    3.22  0.00129 ** 
## Numberpl:EO_culture        -0.52445    0.18177   -2.89  0.00391 ** 
## Tensenonpresent:SexF        0.80100    0.26127    3.07  0.00217 ** 
## Tenseother:SexF             0.92963    0.45932    2.02  0.04298 *  
## Tensenonpresent:EO_lang    -0.04420    0.08479   -0.52  0.60214    
## Tenseother:EO_lang          0.16082    0.13827    1.16  0.24480    
## Tensenonpresent:EO_culture -0.16471    0.16798   -0.98  0.32682    
## Tenseother:EO_culture      -0.48307    0.29526   -1.64  0.10182    
## Switch_discsame:SexF        0.04761    0.21973    0.22  0.82848    
## Switch_discsame:EO_lang     0.06930    0.06849    1.01  0.31166    
## Switch_discsame:EO_culture  0.00346    0.14163    0.02  0.98052    
## Clause_typemain:SexF       -0.03114    0.48205   -0.06  0.94849    
## Clause_typemain:EO_lang    -0.13976    0.17313   -0.81  0.41951    
## Clause_typemain:EO_culture  0.41383    0.32962    1.26  0.20930    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Faetar

interactions_faet_heritage <- glmer(Prodrop ~ Person +
                                #  Number + 
                                #  Grammatical_gender +
                                #  Tense +
                                  Switch_disc +
                                  #Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                  Person*Sex +
                                  Person*Generation +
                               #   Number*Sex +
                                #  Number*Generation +
                               #   Grammatical_gender*Sex +
                               #   Grammatical_gender*Generation +
                              #    Tense*Sex +
                              #    Tense*Generation +
                                  Switch_disc*Sex +
                                  Switch_disc*Generation +
                                  #Clause_type*Sex +
                                  #Clause_type*Generation +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = faetarheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(interactions_faet_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Switch_disc + Preverbal_content_binary + Sex +  
##     Generation + Person * Sex + Person * Generation + Switch_disc *  
##     Sex + Switch_disc * Generation + Preverbal_content_binary *  
##     Sex + Preverbal_content_binary * Generation + (1 | Speaker)
##    Data: faetarheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      653      728     -311      621      795 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.353 -0.434 -0.310 -0.216  4.929 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.354    0.595   
## Number of obs: 811, groups:  Speaker, 13
## 
## Fixed effects:
##                                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                  -1.122      0.446   -2.51    0.012
## Personsecond                                 -0.630      0.785   -0.80    0.422
## Personthird                                  -0.669      0.387   -1.73    0.084
## Switch_discsame                              -1.190      0.518   -2.30    0.022
## Preverbal_content_binaryyes                  -0.597      0.426   -1.40    0.161
## SexF                                         -0.188      0.606   -0.31    0.757
## GenerationGen2                               -0.590      0.765   -0.77    0.441
## Personsecond:SexF                             0.562      0.823    0.68    0.494
## Personthird:SexF                             -0.411      0.519   -0.79    0.428
## Personsecond:GenerationGen2                   1.965      0.890    2.21    0.027
## Personthird:GenerationGen2                    0.792      0.645    1.23    0.219
## Switch_discsame:SexF                          1.260      0.566    2.23    0.026
## Switch_discsame:GenerationGen2                0.372      0.580    0.64    0.521
## Preverbal_content_binaryyes:SexF              0.753      0.541    1.39    0.164
## Preverbal_content_binaryyes:GenerationGen2   -0.552      0.656   -0.84    0.400
##                                             
## (Intercept)                                *
## Personsecond                                
## Personthird                                .
## Switch_discsame                            *
## Preverbal_content_binaryyes                 
## SexF                                        
## GenerationGen2                              
## Personsecond:SexF                           
## Personthird:SexF                            
## Personsecond:GenerationGen2                *
## Personthird:GenerationGen2                  
## Switch_discsame:SexF                       *
## Switch_discsame:GenerationGen2              
## Preverbal_content_binaryyes:SexF            
## Preverbal_content_binaryyes:GenerationGen2  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#No Faetar EO

##Italian

interactions_ital_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                #  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                  Person*Sex +
                                  Person*Generation +
                                  Number*Sex +
                                  Number*Generation +
                              #    Grammatical_gender*Sex +
                               #   Grammatical_gender*Generation +
                                  Tense*Sex +
                                  Tense*Generation +
                                  Switch_disc*Sex +
                                  Switch_disc*Generation +
                                  Clause_type*Sex +
                                  Clause_type*Generation +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = italianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(interactions_ital_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + Generation + Person * Sex +  
##     Person * Generation + Number * Sex + Number * Generation +  
##     Tense * Sex + Tense * Generation + Switch_disc * Sex + Switch_disc *  
##     Generation + Clause_type * Sex + Clause_type * Generation +  
##     Preverbal_content_binary * Sex + Preverbal_content_binary *  
##     Generation + (1 | Speaker)
##    Data: italianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     1033     1157     -492      983     1013 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.672 -0.545 -0.345 -0.121  7.178 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.467    0.683   
## Number of obs: 1038, groups:  Speaker, 11
## 
## Fixed effects:
##                                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                 -0.4051     0.5481   -0.74    0.460
## Personsecond                                 1.1453     0.9423    1.22    0.224
## Personthird                                  0.5044     0.4612    1.09    0.274
## Numberpl                                    -1.7387     0.4087   -4.25  2.1e-05
## Tensenonpresent                             -0.0500     0.3061   -0.16    0.870
## Switch_discsame                             -1.5682     0.3282   -4.78  1.8e-06
## Clause_typemain                             -0.1304     0.3683   -0.35    0.723
## Preverbal_content_binaryyes                 -0.1309     0.3424   -0.38    0.702
## SexF                                         0.9704     0.7031    1.38    0.168
## GenerationGen2                              -0.8383     0.7380   -1.14    0.256
## Personsecond:SexF                           -0.5805     1.5325   -0.38    0.705
## Personthird:SexF                             0.1566     0.5178    0.30    0.762
## Personsecond:GenerationGen2                 -0.7394     1.4507   -0.51    0.610
## Personthird:GenerationGen2                   0.0875     0.6148    0.14    0.887
## Numberpl:SexF                                0.1449     0.4966    0.29    0.770
## Numberpl:GenerationGen2                      0.5496     0.5524    0.99    0.320
## Tensenonpresent:SexF                         0.8003     0.3967    2.02    0.044
## Tensenonpresent:GenerationGen2              -0.8893     0.4233   -2.10    0.036
## Switch_discsame:SexF                        -0.1994     0.3882   -0.51    0.608
## Switch_discsame:GenerationGen2               0.7088     0.4266    1.66    0.097
## Clause_typemain:SexF                        -0.5993     0.4859   -1.23    0.217
## Clause_typemain:GenerationGen2               0.9047     0.5084    1.78    0.075
## Preverbal_content_binaryyes:SexF             0.0131     0.4693    0.03    0.978
## Preverbal_content_binaryyes:GenerationGen2  -0.4610     0.4909   -0.94    0.348
##                                               
## (Intercept)                                   
## Personsecond                                  
## Personthird                                   
## Numberpl                                   ***
## Tensenonpresent                               
## Switch_discsame                            ***
## Clause_typemain                               
## Preverbal_content_binaryyes                   
## SexF                                          
## GenerationGen2                                
## Personsecond:SexF                             
## Personthird:SexF                              
## Personsecond:GenerationGen2                   
## Personthird:GenerationGen2                    
## Numberpl:SexF                                 
## Numberpl:GenerationGen2                       
## Tensenonpresent:SexF                       *  
## Tensenonpresent:GenerationGen2             *  
## Switch_discsame:SexF                          
## Switch_discsame:GenerationGen2             .  
## Clause_typemain:SexF                          
## Clause_typemain:GenerationGen2             .  
## Preverbal_content_binaryyes:SexF              
## Preverbal_content_binaryyes:GenerationGen2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interactions_ital_heritage_EO <- glmer(Prodrop ~ Person +
                                  Number + 
                                #  Grammatical_gender +
                                  Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  EO_lang +
                                  EO_culture +
                                  Person*Sex +
                                  Person*EO_lang +
                                  Person*EO_culture +
                                  Number*Sex +
                                  Number*EO_lang +
                                  Number*EO_culture +
                              #    Grammatical_gender*Sex +
                               #   Grammatical_gender*EO_lang +
                                  Tense*Sex +
                                  Tense*EO_lang +
                                  Tense*EO_culture +
                                  Switch_disc*Sex +
                                  Switch_disc*EO_lang +
                                  Switch_disc*EO_culture +
                                  Clause_type*Sex +
                                  Clause_type*EO_lang +
                                  Clause_type*EO_culture +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*EO_lang +
                                  Preverbal_content_binary*EO_culture +
                   (1|Speaker),
                    data = italianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))

summary(interactions_ital_heritage_EO, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Tense + Switch_disc + Clause_type +  
##     Preverbal_content_binary + Sex + EO_lang + EO_culture + Person *  
##     Sex + Person * EO_lang + Person * EO_culture + Number * Sex +  
##     Number * EO_lang + Number * EO_culture + Tense * Sex + Tense *  
##     EO_lang + Tense * EO_culture + Switch_disc * Sex + Switch_disc *  
##     EO_lang + Switch_disc * EO_culture + Clause_type * Sex +  
##     Clause_type * EO_lang + Clause_type * EO_culture + Preverbal_content_binary *  
##     Sex + Preverbal_content_binary * EO_lang + Preverbal_content_binary *  
##     EO_culture + (1 | Speaker)
##    Data: italianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##     1039     1202     -486      973     1005 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.641 -0.557 -0.339 -0.079 11.926 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.314    0.56    
## Number of obs: 1038, groups:  Speaker, 11
## 
## Fixed effects:
##                                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                             -0.9935     0.4400   -2.26    0.024 *  
## Personsecond                             0.7547     1.3009    0.58    0.562    
## Personthird                              0.5842     0.3520    1.66    0.097 .  
## Numberpl                                -1.6162     0.3549   -4.55  5.3e-06 ***
## Tensenonpresent                         -0.6146     0.2702   -2.27    0.023 *  
## Switch_discsame                         -1.1196     0.2558   -4.38  1.2e-05 ***
## Clause_typemain                          0.4941     0.3478    1.42    0.156    
## Preverbal_content_binaryyes             -0.2411     0.2906   -0.83    0.407    
## SexF                                     0.5457     0.6007    0.91    0.364    
## EO_lang                                 -0.5334     0.2683   -1.99    0.047 *  
## EO_culture                              -0.3876     0.3098   -1.25    0.211    
## Personsecond:SexF                       -0.8790     1.3806   -0.64    0.524    
## Personthird:SexF                         0.0922     0.4517    0.20    0.838    
## Personsecond:EO_lang                    -0.5141     0.6300   -0.82    0.414    
## Personthird:EO_lang                     -0.0886     0.1878   -0.47    0.637    
## Personsecond:EO_culture                 -0.1004     0.9901   -0.10    0.919    
## Personthird:EO_culture                  -0.0250     0.2109   -0.12    0.906    
## Numberpl:SexF                            0.3648     0.4413    0.83    0.408    
## Numberpl:EO_lang                        -0.2151     0.1990   -1.08    0.280    
## Numberpl:EO_culture                     -0.0613     0.2267   -0.27    0.787    
## Tensenonpresent:SexF                     0.3267     0.3531    0.93    0.355    
## Tensenonpresent:EO_lang                 -0.3174     0.1665   -1.91    0.057 .  
## Tensenonpresent:EO_culture              -0.2762     0.1829   -1.51    0.131    
## Switch_discsame:SexF                     0.1089     0.3563    0.31    0.760    
## Switch_discsame:EO_lang                  0.2158     0.1513    1.43    0.154    
## Switch_discsame:EO_culture               0.3874     0.1769    2.19    0.029 *  
## Clause_typemain:SexF                    -0.2082     0.4459   -0.47    0.641    
## Clause_typemain:EO_lang                  0.2861     0.2131    1.34    0.180    
## Clause_typemain:EO_culture               0.3606     0.2215    1.63    0.103    
## Preverbal_content_binaryyes:SexF        -0.2489     0.4029   -0.62    0.537    
## Preverbal_content_binaryyes:EO_lang      0.0574     0.1775    0.32    0.746    
## Preverbal_content_binaryyes:EO_culture   0.0433     0.2101    0.21    0.837    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Korean

interactions_kor_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                  #Grammatical_gender +
                                  #Tense +
                                  Switch_disc +
                                  #Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                  Person*Sex +
                                  Person*Generation +
                                  Number*Sex +
                                  Number*Generation +
                                  #Grammatical_gender*Sex +
                                  #Grammatical_gender*Generation +
                                  #Tense*Sex +
                                  #Tense*Generation +
                                  Switch_disc*Sex +
                                  Switch_disc*Generation +
                                 # Clause_type*Sex +
                                 # Clause_type*Generation +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = koreanheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
summary(interactions_kor_heritage, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Switch_disc + Preverbal_content_binary +  
##     Sex + Generation + Person * Sex + Person * Generation + Number *  
##     Sex + Number * Generation + Switch_disc * Sex + Switch_disc *  
##     Generation + Preverbal_content_binary * Sex + Preverbal_content_binary *  
##     Generation + (1 | Speaker)
##    Data: koreanheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      547      630     -254      509      566 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.163 -0.533 -0.363 -0.086 11.609 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.184    0.429   
## Number of obs: 585, groups:  Speaker, 10
## 
## Fixed effects:
##                                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                 -0.5078     0.6489   -0.78   0.4339
## Personsecond                                -1.5206     1.3635   -1.12   0.2648
## Personthird                                 -2.3097     1.3381   -1.73   0.0843
## Numberpl                                    -0.1357     0.6832   -0.20   0.8425
## Switch_discsame                             -0.2256     0.5276   -0.43   0.6690
## Preverbal_content_binaryyes                 -0.5514     0.6204   -0.89   0.3742
## SexF                                        -0.2681     0.6292   -0.43   0.6701
## GenerationGen2                              -0.7180     0.6745   -1.06   0.2871
## Personsecond:SexF                            0.0964     1.4379    0.07   0.9465
## Personthird:SexF                             1.1120     1.4942    0.74   0.4567
## Personsecond:GenerationGen2                 -0.6981     1.4311   -0.49   0.6257
## Personthird:GenerationGen2                  -1.8746     1.4974   -1.25   0.2106
## Numberpl:SexF                               -1.2014     0.7817   -1.54   0.1243
## Numberpl:GenerationGen2                     -0.1976     0.7668   -0.26   0.7967
## Switch_discsame:SexF                        -0.4447     0.4684   -0.95   0.3424
## Switch_discsame:GenerationGen2              -0.2189     0.5329   -0.41   0.6812
## Preverbal_content_binaryyes:SexF            -0.1646     0.5737   -0.29   0.7742
## Preverbal_content_binaryyes:GenerationGen2   1.7081     0.6241    2.74   0.0062
##                                              
## (Intercept)                                  
## Personsecond                                 
## Personthird                                . 
## Numberpl                                     
## Switch_discsame                              
## Preverbal_content_binaryyes                  
## SexF                                         
## GenerationGen2                               
## Personsecond:SexF                            
## Personthird:SexF                             
## Personsecond:GenerationGen2                  
## Personthird:GenerationGen2                   
## Numberpl:SexF                                
## Numberpl:GenerationGen2                      
## Switch_discsame:SexF                         
## Switch_discsame:GenerationGen2               
## Preverbal_content_binaryyes:SexF             
## Preverbal_content_binaryyes:GenerationGen2 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
 interactions_kor_heritage_EO <- glmer(Prodrop ~ Person +
                                   Number +
                                   #Grammatical_gender +
                                   #Tense +
                                   Switch_disc +
                                #   Clause_type +
                                   Preverbal_content_binary +
                                  Sex +
                                   EO_lang +
                                   EO_culture +
                                   Person*Sex +
                                   Person*EO_lang +
                                   Person*EO_culture +
                                   Number*Sex +
                                   Number*EO_lang +
                                   Number*EO_culture +
                                   #Grammatical_gender*Sex +
                                   #Grammatical_gender*EO_lang +
                                   #Grammatical_gender*EO_culture +
                                   #Tense*Sex +
                                   #Tense*EO_lang +
                                   #Tense*EO_culture +
                                   Switch_disc*Sex +
                                   Switch_disc*EO_lang +
                                   Switch_disc*EO_culture +
                               #    Clause_type*Sex +
                                #   Clause_type*EO_lang +
                                #   Clause_type*EO_culture +
                                   Preverbal_content_binary*Sex +
                                   Preverbal_content_binary*EO_lang +
                                   Preverbal_content_binary*EO_culture +
                   (1|Speaker),
                     data = koreanheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 5 columns / coefficients
## boundary (singular) fit: see help('isSingular')
 summary(interactions_kor_heritage_EO, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Switch_disc + Preverbal_content_binary +  
##     Sex + EO_lang + EO_culture + Person * Sex + Person * EO_lang +  
##     Person * EO_culture + Number * Sex + Number * EO_lang + Number *  
##     EO_culture + Switch_disc * Sex + Switch_disc * EO_lang +  
##     Switch_disc * EO_culture + Preverbal_content_binary * Sex +  
##     Preverbal_content_binary * EO_lang + Preverbal_content_binary *  
##     EO_culture + (1 | Speaker)
##    Data: koreanheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      262      352     -107      214      289 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.171 -0.441 -0.245  0.000  4.141 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 1.32e-38 1.15e-19
## Number of obs: 313, groups:  Speaker, 6
## 
## Fixed effects:
##                                         Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                            -3.01e+00   1.45e+00   -2.07    0.038 *
## Personsecond                           -1.96e+02   3.42e+05    0.00    1.000  
## Personthird                            -1.18e+02   1.48e+05    0.00    0.999  
## Numberpl                                1.00e+00   1.56e+00    0.64    0.521  
## Switch_discsame                        -6.37e-01   1.06e+00   -0.60    0.548  
## Preverbal_content_binaryyes             1.67e+00   1.45e+00    1.15    0.248  
## SexF                                    1.16e+00   1.31e+00    0.88    0.378  
## EO_lang                                -6.64e-01   6.44e-01   -1.03    0.303  
## EO_culture                              3.25e-01   7.30e-01    0.44    0.656  
## Personsecond:SexF                       5.58e+00   5.60e+04    0.00    1.000  
## Personthird:SexF                        1.60e+02   2.24e+05    0.00    0.999  
## Personsecond:EO_lang                   -9.46e+01   1.64e+05    0.00    1.000  
## Personthird:EO_lang                    -7.10e+00   5.46e+04    0.00    1.000  
## Personthird:EO_culture                 -9.06e+01   4.15e+04    0.00    0.998  
## Numberpl:SexF                          -1.12e-01   1.59e+00   -0.07    0.944  
## Numberpl:EO_lang                        8.41e-01   7.07e-01    1.19    0.234  
## Numberpl:EO_culture                    -1.13e+00   7.08e-01   -1.59    0.111  
## Switch_discsame:SexF                   -5.31e-01   9.35e-01   -0.57    0.571  
## Switch_discsame:EO_lang                -2.57e-01   4.91e-01   -0.52    0.601  
## Switch_discsame:EO_culture             -6.13e-01   5.33e-01   -1.15    0.250  
## Preverbal_content_binaryyes:SexF       -2.25e+00   1.31e+00   -1.73    0.084 .
## Preverbal_content_binaryyes:EO_lang     4.10e-01   6.52e-01    0.63    0.530  
## Preverbal_content_binaryyes:EO_culture  1.06e+00   6.98e-01    1.53    0.127  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 5 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

##Polish

interactions_polish_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                             #     Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                  Person*Sex +
                                  Person*Generation +
                                  Number*Sex +
                                  Number*Generation +
                                  Grammatical_gender*Sex +
                                  Grammatical_gender*Generation +
                           #       Tense*Sex +
                            #      Tense*Generation +
                                  Switch_disc*Sex +
                                  Switch_disc*Generation +
                                  Clause_type*Sex +
                                  Clause_type*Generation +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = polishheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
summary(interactions_polish_heritage, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Sex + Generation +  
##     Person * Sex + Person * Generation + Number * Sex + Number *  
##     Generation + Grammatical_gender * Sex + Grammatical_gender *  
##     Generation + Switch_disc * Sex + Switch_disc * Generation +  
##     Clause_type * Sex + Clause_type * Generation + Preverbal_content_binary *  
##     Sex + Preverbal_content_binary * Generation + (1 | Speaker)
##    Data: polishheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      395      492     -172      345      342 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.723 -0.516 -0.330  0.380  4.332 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.798    0.894   
## Number of obs: 367, groups:  Speaker, 13
## 
## Fixed effects:
##                                             Estimate Std. Error z value
## (Intercept)                                  -1.2381     0.5503   -2.25
## Personsecond                                  2.0050     1.0786    1.86
## Personthird                                   0.5889     0.5878    1.00
## Numberpl                                     -0.0162     0.5337   -0.03
## Grammatical_genderF                           0.7982     0.8393    0.95
## Switch_discOther                            -18.7809  7481.1326    0.00
## Switch_discsame                              -1.1033     0.4421   -2.50
## Clause_typemain                             -18.3207  2390.3204   -0.01
## Preverbal_content_binaryyes                  -0.0720     1.0019   -0.07
## SexF                                          0.5275     1.1746    0.45
## GenerationGen2                                0.1928     0.7565    0.25
## Personthird:SexF                              0.2508     1.0075    0.25
## Personsecond:GenerationGen2                  -3.7609     1.6385   -2.30
## Personthird:GenerationGen2                   -0.6481     1.0286   -0.63
## Numberpl:SexF                                -0.2415     1.0234   -0.24
## Numberpl:GenerationGen2                      -0.3705     0.8397   -0.44
## Grammatical_genderF:SexF                     -0.7965     1.4306   -0.56
## Grammatical_genderF:GenerationGen2            0.3213     1.2207    0.26
## Switch_discsame:SexF                         -0.4777     0.6628   -0.72
## Switch_discsame:GenerationGen2                0.5565     0.6090    0.91
## Clause_typemain:SexF                         -0.4725     1.0879   -0.43
## Clause_typemain:GenerationGen2               19.2773  2390.3205    0.01
## Preverbal_content_binaryyes:SexF             -0.0649     1.2779   -0.05
## Preverbal_content_binaryyes:GenerationGen2    0.5408     1.3559    0.40
##                                            Pr(>|z|)  
## (Intercept)                                   0.024 *
## Personsecond                                  0.063 .
## Personthird                                   0.316  
## Numberpl                                      0.976  
## Grammatical_genderF                           0.342  
## Switch_discOther                              0.998  
## Switch_discsame                               0.013 *
## Clause_typemain                               0.994  
## Preverbal_content_binaryyes                   0.943  
## SexF                                          0.653  
## GenerationGen2                                0.799  
## Personthird:SexF                              0.803  
## Personsecond:GenerationGen2                   0.022 *
## Personthird:GenerationGen2                    0.529  
## Numberpl:SexF                                 0.813  
## Numberpl:GenerationGen2                       0.659  
## Grammatical_genderF:SexF                      0.578  
## Grammatical_genderF:GenerationGen2            0.792  
## Switch_discsame:SexF                          0.471  
## Switch_discsame:GenerationGen2                0.361  
## Clause_typemain:SexF                          0.664  
## Clause_typemain:GenerationGen2                0.994  
## Preverbal_content_binaryyes:SexF              0.959  
## Preverbal_content_binaryyes:GenerationGen2    0.690  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
interactions_polish_heritage_EO <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                             #     Tense +
                                  Switch_disc +
                                  Clause_type +
                                  Preverbal_content_binary +
                                  Sex +
                                  EO_lang +
                               EO_culture +
                                  Person*Sex +
                                  Person*EO_lang +
                                 Person*EO_culture +
                                  Number*Sex +
                                  Number*EO_lang +
                                  Number*EO_culture +
                                  Grammatical_gender*Sex +
                                  Grammatical_gender*EO_lang +
                                 Grammatical_gender*EO_culture +
                           #       Tense*Sex +
                            #      Tense*EO_lang +
                            #      Tense*EO_culture +
                                  Switch_disc*Sex +
                                  Switch_disc*EO_lang +
                                  Switch_disc*EO_culture +
                                  Clause_type*Sex +
                                  Clause_type*EO_lang +
                                  Clause_type*EO_culture +
                                  Preverbal_content_binary*Sex +
                                  Preverbal_content_binary*EO_lang +
                                  Preverbal_content_binary*EO_culture +
                   (1|Speaker),
                    data = polishheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function
## evaluations exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
summary(interactions_polish_heritage_EO, correl=F)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Preverbal_content_binary + Sex + EO_lang +  
##     EO_culture + Person * Sex + Person * EO_lang + Person * EO_culture +  
##     Number * Sex + Number * EO_lang + Number * EO_culture + Grammatical_gender *  
##     Sex + Grammatical_gender * EO_lang + Grammatical_gender *  
##     EO_culture + Switch_disc * Sex + Switch_disc * EO_lang +  
##     Switch_disc * EO_culture + Clause_type * Sex + Clause_type *  
##     EO_lang + Clause_type * EO_culture + Preverbal_content_binary *  
##     Sex + Preverbal_content_binary * EO_lang + Preverbal_content_binary *  
##     EO_culture + (1 | Speaker)
##    Data: polishheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      356      482     -144      288      270 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.936 -0.599 -0.338  0.465  5.530 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.158    0.397   
## Number of obs: 304, groups:  Speaker, 11
## 
## Fixed effects:
##                                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                             -0.8218     0.4295   -1.91    0.056 .
## Personsecond                            -0.0399     2.2114   -0.02    0.986  
## Personthird                             -3.1616     3.5958   -0.88    0.379  
## Numberpl                                -0.5226     1.0798   -0.48    0.628  
## Grammatical_genderF                      2.3731     1.9059    1.25    0.213  
## Switch_discOther                       -16.4679   219.4300   -0.08    0.940  
## Switch_discsame                         -1.2285     0.5324   -2.31    0.021 *
## Clause_typemain                         -1.5757     1.8762   -0.84    0.401  
## Preverbal_content_binaryyes             -1.3787     1.7983   -0.77    0.443  
## SexF                                     1.2823     1.4245    0.90    0.368  
## EO_lang                                  0.3600     0.4456    0.81    0.419  
## EO_culture                               0.0807     0.2050    0.39    0.694  
## Personthird:SexF                         6.1397     5.6903    1.08    0.281  
## Personsecond:EO_lang                    -3.5638     1.9035   -1.87    0.061 .
## Personthird:EO_lang                     -4.8673     3.8072   -1.28    0.201  
## Personsecond:EO_culture                  0.3968     0.6231    0.64    0.524  
## Personthird:EO_culture                   0.7030     0.7160    0.98    0.326  
## Numberpl:SexF                           -0.4064     2.0255   -0.20    0.841  
## Numberpl:EO_lang                        -0.5605     1.3520   -0.41    0.678  
## Numberpl:EO_culture                     -0.1265     0.3021   -0.42    0.675  
## Grammatical_genderF:SexF                -4.6250     2.9967   -1.54    0.123  
## Grammatical_genderF:EO_lang              2.5669     2.1943    1.17    0.242  
## Grammatical_genderF:EO_culture          -0.5449     0.3995   -1.36    0.173  
## Switch_discsame:SexF                     0.7645     0.9149    0.84    0.403  
## Switch_discsame:EO_lang                  0.5594     0.5095    1.10    0.272  
## Switch_discOther:EO_culture              0.0863   242.5886    0.00    1.000  
## Switch_discsame:EO_culture               0.2578     0.2296    1.12    0.262  
## Clause_typemain:SexF                     0.1398     2.0586    0.07    0.946  
## Clause_typemain:EO_lang                  5.7611     3.3852    1.70    0.089 .
## Clause_typemain:EO_culture               0.4569     0.8251    0.55    0.580  
## Preverbal_content_binaryyes:SexF         2.9442     2.5753    1.14    0.253  
## Preverbal_content_binaryyes:EO_lang     -2.9048     2.3163   -1.25    0.210  
## Preverbal_content_binaryyes:EO_culture   0.3348     0.5247    0.64    0.523  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## optimizer (bobyqa) convergence code: 1 (bobyqa -- maximum number of function evaluations exceeded)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

##Ukrainian

interactions_ukrainian_heritage <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                             #     Tense +
                                  Switch_disc +
                                  Clause_type +
                            #      Preverbal_content_binary +
                                  Sex +
                                  Generation +
                                  Person*Sex +
                                  Person*Generation +
                                  Number*Sex +
                                  Number*Generation +
                                  Grammatical_gender*Sex +
                                  Grammatical_gender*Generation +
                           #       Tense*Sex +
                            #      Tense*Generation +
                                  Switch_disc*Sex +
                                  Switch_disc*Generation +
                                  Clause_type*Sex +
                                  Clause_type*Generation +
                         #         Preverbal_content_binary*Sex +
                          #        Preverbal_content_binary*Generation +
                   (1|Speaker),
                    data = ukrainianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
summary(interactions_ukrainian_heritage, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Sex + Generation + Person * Sex + Person *  
##     Generation + Number * Sex + Number * Generation + Grammatical_gender *  
##     Sex + Grammatical_gender * Generation + Switch_disc * Sex +  
##     Switch_disc * Generation + Clause_type * Sex + Clause_type *  
##     Generation + (1 | Speaker)
##    Data: ukrainianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      389      475     -173      345      345 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.712 -0.518 -0.333  0.380  4.336 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.772    0.879   
## Number of obs: 367, groups:  Speaker, 13
## 
## Fixed effects:
##                                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                          -1.2393     0.5428   -2.28    0.022 *
## Personsecond                          2.0065     1.0710    1.87    0.061 .
## Personthird                           0.5980     0.5872    1.02    0.309  
## Numberpl                             -0.0209     0.5336   -0.04    0.969  
## Grammatical_genderF                   0.7967     0.8346    0.95    0.340  
## Switch_discOther                    -18.6053  7530.7171    0.00    0.998  
## Switch_discsame                      -1.1080     0.4416   -2.51    0.012 *
## Clause_typemain                     -18.2974  2358.5419   -0.01    0.994  
## SexF                                  0.5343     1.1642    0.46    0.646  
## GenerationGen2                        0.2150     0.7463    0.29    0.773  
## Personthird:SexF                      0.2227     1.0011    0.22    0.824  
## Personsecond:GenerationGen2          -3.7526     1.6315   -2.30    0.021 *
## Personthird:GenerationGen2           -0.6578     1.0254   -0.64    0.521  
## Numberpl:SexF                        -0.2458     1.0197   -0.24    0.809  
## Numberpl:GenerationGen2              -0.3528     0.8355   -0.42    0.673  
## Grammatical_genderF:SexF             -0.8050     1.4239   -0.57    0.572  
## Grammatical_genderF:GenerationGen2    0.3244     1.2147    0.27    0.789  
## Switch_discsame:SexF                 -0.4446     0.6555   -0.68    0.498  
## Switch_discsame:GenerationGen2        0.5835     0.6056    0.96    0.335  
## Clause_typemain:SexF                 -0.5130     1.0871   -0.47    0.637  
## Clause_typemain:GenerationGen2       19.2742  2358.5420    0.01    0.993  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
interactions_ukrainian_heritage_EO <- glmer(Prodrop ~ Person +
                                  Number + 
                                  Grammatical_gender +
                             #     Tense +
                                  Switch_disc +
                                  Clause_type +
                            #      Preverbal_content_binary +
                                  Sex +
                                  EO_lang +
                                EO_culture + 
                                  Person*Sex +
                                  Person*EO_lang +
                                  Person*EO_culture +
                                  Number*Sex +
                                  Number*EO_lang +
                                  Number*EO_culture +
                                  Grammatical_gender*Sex +
                                  Grammatical_gender*EO_lang +
                                  Grammatical_gender*EO_culture +
                           #       Tense*Sex +
                            #      Tense*EO_lang +
                            #      Tense*EO_culture +
                                  Switch_disc*Sex +
                                  Switch_disc*EO_lang +
                                  Switch_disc*EO_culture +
                                  Clause_type*Sex +
                                  Clause_type*EO_lang +
                                  Clause_type*EO_culture +
                         #         Preverbal_content_binary*Sex +
                          #        Preverbal_content_binary*EO_lang +
                          #        Preverbal_content_binary*EO_culture +
                   (1|Speaker),
                    data = ukrainianheritagedata, family = "binomial", control = glmerControl(optCtrl = list(maxfun = 2e4), optimizer = "bobyqa"))
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 2 negative eigenvalues
summary(interactions_ukrainian_heritage_EO, correl=F)
## Warning in vcov.merMod(object, use.hessian = use.hessian): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Warning in vcov.merMod(object, correlation = correlation, sigm = sig): variance-covariance matrix computed from finite-difference Hessian is
## not positive definite or contains NA values: falling back to var-cov estimated from RX
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Prodrop ~ Person + Number + Grammatical_gender + Switch_disc +  
##     Clause_type + Sex + EO_lang + EO_culture + Person * Sex +  
##     Person * EO_lang + Person * EO_culture + Number * Sex + Number *  
##     EO_lang + Number * EO_culture + Grammatical_gender * Sex +  
##     Grammatical_gender * EO_lang + Grammatical_gender * EO_culture +  
##     Switch_disc * Sex + Switch_disc * EO_lang + Switch_disc *  
##     EO_culture + Clause_type * Sex + Clause_type * EO_lang +  
##     Clause_type * EO_culture + (1 | Speaker)
##    Data: ukrainianheritagedata
## Control: glmerControl(optCtrl = list(maxfun = 20000), optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##      350      462     -145      290      274 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.935 -0.601 -0.334  0.512  4.765 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  Speaker (Intercept) 0.295    0.543   
## Number of obs: 304, groups:  Speaker, 11
## 
## Fixed effects:
##                                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -0.932      0.435   -2.14    0.032 *
## Personsecond                     -0.159      2.116   -0.08    0.940  
## Personthird                      -2.916      3.436   -0.85    0.396  
## Numberpl                         -0.378      1.087   -0.35    0.728  
## Grammatical_genderF               2.404      2.065    1.16    0.244  
## Switch_discOther                -16.029   3206.037    0.00    0.996  
## Switch_discsame                  -1.152      0.518   -2.23    0.026 *
## Clause_typemain                  -2.238      1.773   -1.26    0.207  
## SexF                              1.524      1.443    1.06    0.291  
## EO_lang                           0.238      0.458    0.52    0.603  
## EO_culture                        0.127      0.217    0.59    0.558  
## Personthird:SexF                  5.673      5.442    1.04    0.297  
## Personsecond:EO_lang             -3.529      1.818   -1.94    0.052 .
## Personthird:EO_lang              -4.490      3.591   -1.25    0.211  
## Personsecond:EO_culture           0.454      0.605    0.75    0.453  
## Personthird:EO_culture            0.662      0.697    0.95    0.342  
## Numberpl:SexF                    -0.632      2.031   -0.31    0.756  
## Numberpl:EO_lang                 -0.324      1.333   -0.24    0.808  
## Numberpl:EO_culture              -0.141      0.300   -0.47    0.637  
## Grammatical_genderF:SexF         -4.737      3.244   -1.46    0.144  
## Grammatical_genderF:EO_lang       2.660      2.384    1.12    0.265  
## Grammatical_genderF:EO_culture   -0.584      0.415   -1.41    0.160  
## Switch_discsame:SexF              0.767      0.900    0.85    0.394  
## Switch_discsame:EO_lang           0.525      0.501    1.05    0.294  
## Switch_discOther:EO_culture       0.302   2780.475    0.00    1.000  
## Switch_discsame:EO_culture        0.233      0.224    1.04    0.299  
## Clause_typemain:SexF              1.416      1.672    0.85    0.397  
## Clause_typemain:EO_lang           3.692      1.755    2.10    0.035 *
## Clause_typemain:EO_culture        0.586      0.703    0.83    0.405  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## optimizer (bobyqa) convergence code: 0 (OK)
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 2 negative eigenvalues

##Models for all languages and all speakers

##Main effects for all languages

##Interactions for all languages