

HLVC Website

DEVELOPMENT AND DESIGN GUIDE

Konstantin Shapoval

Table of Contents

OVERVIEW of the website’s STRUCTURE and DESIGN .. 3

STRUCTURAL COMPONENTS of every page .. 3

DESIGN FEATURES of every page .. 6

Dynamic FUNCTIONALITY of some pages ... 6

GRAPHICAL and AUDIO content of pages .. 7

ADDING, EDITING, DELETING and MOVING pages .. 9

ADDING a new PAGE to the website ... 9

DELETING a PAGE from the website ... 12

EDITING the CONTENT of a page ... 13

MOVING a page TO the NEW CATEGORY .. 13

Working with the MAP COMPONENT ... 15

ADDING a new PARTICIPANT to the MAP COMPONENT .. 15

Keeping RESEARCH ASSISTANTS pages UP TO DATE .. 18

ADDING a NEW research assistant (RA) ... 18

MOVING a research assistant TO the FORMER RA’s page ... 21

MIGRATING the WEBSITE to a different location ... 22

LINKING to the website FROM OTHER WEBSITES .. 25

OVERVIEW OF THE WEBSITE’S
STRUCTURE AND DESIGN

STRUCTURAL COMPONENTS OF EVERY PAGE

FIGURE 1.0

The website has five visible components: banner, navigation bar, breadcrumbs, text, footer

(Figure 1.0). While the breadcrumbs and the text components are different for each individual

page, the banner, navigation bar and the footer are the same for all pages.

You can edit banner, navigation bar and footer by accessing the following files:

/includes/parts/banner_include.html (banner)

/includes/parts/footer_include.html (footer)

/includes/parts/nav_include.html (navigation bar)

How to access text component and breadcrumbs will be explained later on in this chapter.

In addition to the five visible components, the website also has one invisible component: header.

The header contains links to the cascading style sheets, which are responsible for the design-

related definitions such as font size and colour.

The header is the same for all pages and can be accessed at the following location:

/includes/parts/head_include.html (header)

FIGURE 1.1

The visible and invisible components get assembled into a web-page by the container (Figure

1.1). While visible and invisible components are written in HTML, the container is written in

PHP.

FIGURE 1.2

There is one container for each web-page of the web-site. A breadcrumb definition is written in

the code of each container (Figure 1.2).

All containers are located in the main folder of the website project. All text components are

located in /include/content folder. The filename of the container and the filename of the

text component must correspond. However the filename of the container and the filename of the

text component differ from each other in that they have different extensions. Being written in

PHP, the container ends with .php, while the text component ends with .html as it is written in

HTML.

For example:

/1_1_objectives.php (container)

/includes/content/1_1_objectives.html (text component)

Besides containers, there are two more files in the main folder.

The file, index.php, serves to redirect the user to the homepage in case the user does not know

the explicit path to the homepage.

The file, settings.php, sets the global variables for all web-pages of the web-site. You will

need to modify those variables if you are moving the entire web-site from one host provider to

another, or if you change the domain name.

DESIGN FEATURES OF EVERY PAGE

Such features as the font colour, table width, border’s colour are all defined in cascading style

sheet files. These files are located at:

/css

The link to the global cascading style sheet is provided within the header component. However,

in addition to the global style, each individual page can have its own specific set of styles. For

example, the Map web-page has the same border width as every page of the web-site, but in

addition it has special styles that define the design features of the Google Map application.

Page-specific styles are encoded within the container file.

Global style definitions header component

Page-specific style definitions container file

DYNAMIC FUNCTIONALITY OF SOME PAGES

For this website, the dynamic functionality is achieved through the use of JavaScript. All

JavaScript code resides in

/js

JavaScript code is added to the web-page in its container file (Figure 1.3).

FIGURE 1.3

GRAPHICAL AND AUDIO CONTENT OF PAGES

In terms of multimedia, the website makes use of Flash .swf files, graphical images and Google

Maps applications.

Flash .swf files are found in

/audio

They are used in the Google Map application to allow the user to listen to the interview samples.

Each folder within the audio folder corresponds to the speaker. In another chapter I will show

you how to make use of these folders.

FIGURE 1.4

All graphical content is located at

/images

There isn’t much more I can say about the graphical contents.

ADDING, EDITING, DELETING
AND MOVING PAGES

ADDING A NEW PAGE TO THE WEBSITE

In this chapter we will go through an example of adding a What’s New page to the website

(Figure 2.0).

FIGURE 2.0

Suppose you want to add your new page to go after the References page. This will require the

following modifications:

1. Create container page

2. Create text page

3. Edit navigation bar

4. Upload the three modified pages to the hosting server

First, create a new container for the page. The easiest way to create a container is to copy the

existing one and modify that copy.

Take the container for the Reference page, which is called 1_6_refs.php and make a copy of

it. Notice how the name of each file starts with a number. The number corresponds to the

location on the navigation bar. Since What’s New page comes after the Reference page increase

the number by one: 1_7_whats_new.php.

Next, open your Notepad or a web-page editor and make three modifications to the code of the

file (Figure 2.1).

FIGURE 2.1

Change the title of the page
to What’s New. This is the
text between <title> and

</title> keywords. The

new code should look like
this:
<title>What’s
New</title>

Change the breadcrumbs.
The new code should have

what’s new after the last
» and before </div>

Change the link to the text-
content of the new web-
page. The filename of the
text-content must be the

same as that of its container,
except at the end it will have
.html instead of .php.

In the given example the
container file is
1_7_whats_new.php
Therefore the text-content
file should be
1_7_whats_new.html

Then, go to the folder /includes/content and in that folder create a new HTML file called

1_7_whats_new.html, which will serve as the text-content file for the new web-page.

Once again, the easiest way to do that is simply to copy an existing HTML file.

Notice that at this point we are not creating an HTML web-page file. We are creating an HTML

file. The difference is that the file we create will contain very little HTML code – it will only

contain HTML code related to representing text and graphics on screen and nothing more

(Figuure 2.2).

FIGURE 2.2

Once you have created the text-content file you are not required to program its code. Instead, you

can switch to the designer view and edit text as you would in Microsoft Word (Figure 2.3).

FIGURE 2.3

Next go to the folder /navigation/parts and open up the file called nav_include.html,

which is responsible for producing the navigation bar for the website.

FIGURE 2.4

Add the link that will point to the container file (Figure 2.4). For the What’s New page, which

comes after the References page, the line of code would be:

What’s New

As shown on the image, it should be inserted right after the link to the Reference page.

Once this is done, you are ready to upload the three files to the server.

DELETING A PAGE FROM THE WEBSITE

To delete the you need to delete the following:

Page container (.php)

Text-content file (.html)

Also you will need to remove the link to the page from the navigation bar. Therefore, you would

need to modify /include/parts/nav_include.html page.

Lastly, you will need to upload the updated version of the nav_include.html file to your

server.

It is a good idea to remove the page container (.php) and the text-content file (.html) from the

server as well as from your development environment.

EDITING THE CONTENT OF A PAGE

Go to /include/content folder and open up the file which you would like to modify. The

text of each page is written in the most basic HTML code. However, to simplify things you can

use a visual editor application such as Dreamweaver to work on the content of the file. The

application will allow you to edit the file in much the same way you would edit a Word file.

Notice that to modify the content of the page you do not need to work on the container file

(.php).

MOVING A PAGE TO THE NEW CATEGORY

Suppose you want to move the What’s New page from About category to People category.

To do that go to /include/content folder and open up the nav_include.html file.

FIGURE 2.5

Move the link to the container file from ABOUT category to the PEOPLE category (Figure 2.5).

Upload the updated version of the nav_include.html to the server.

WORKING WITH THE
MAP COMPONENT

ADDING A NEW PARTICIPANT TO THE MAP COMPONENT

Suppose you want to add a new marker for the participant to the map component. To do that go

to /js folder and open up the table_of_samples.js file. Although the file is written in

JavaScript, it actually contains virtually no code.

FIGURE 3.0

As the picture above illustrates, the file contains a table of values (Figure 3.0). Each row

represents a participant (Figure 3.1).

FIGURE 3.1

In order to add a participant you will need the following seven pieces of information ready:

 Participant’s code id

 Latitude (Google.maps)

 Longitude (Google.maps)

 Directory of the corresponding audio sample

 Language

 Generation

 Age

I will describe how to determine the latitude and the longitude for a participant in another

chapter. For now, let’s just assume that you already have those.

In addition to the seven mandatory pieces of information, you can also include a description, but

this is optional. The description is for the developer; it will not be displayed to the end-user.

Each row starts must start with “[” and must end with “],”. If you look at the very last line of the

value of tables code you will notice that it ends on “]” – no comma at the end (Figure 3.1). This

is because it marks the end of the table. Insert new values from the top in order to avoid

accidentally leaving the table open. If you leave the table open, it will generate an error.

Every column is delimited by a comma. There are eight columns (Figure 3.2).

FIGURE 3.2

Column 1: Participant’s unique id

Column 2: Latitude

Column 3: Longitude

Column 4: (optional) your comments, descriptions, etc.

Column 5: Audio sample directory (do not put filename extension)

Column 6: Language

Column 7: Generation

Column 8: Age

Language is abbreviated as follows:

CA – Cantonese

FA – Faetar

IT – Italian

KO – Korean

RU – Russian

UK – Ukrainian

After adding the participant’s information to the table of values, save and close the file.

Next, make sure to add the directory containing audio sample files to the /audio folder.

Next, upload the table_of_samples.js file and the audio sample directory to the server.

KEEPING RESEARCH ASSISTANTS
PAGES UP TO DATE

ADDING A NEW RESEARCH ASSISTANT (RA)

The project relies on colour-coding to represent languages that are being covered in the research.

Information about each RA is encapsulated in a box with the border color that matches the

language the RA is working on (Figure 4.0).

FIGURE 4.0

To add a new RA you need to duplicate the box and add change the name, the email address. If

the new RA supplied you with their photograph and personal bio text, you can also add those to

the newly created box.

This is best done by editing the HTML code of the page. To do that, go to /include/content

and open 3_2_active_ra.html in your HTML editor.

Browse through the file until you find a box from the language group that you wish to add the

new RA to. For example, if your new RA is working on Faetar language, then you would look

for an RA who is already in Faetar group and duplicate that RA’s box.

The code will look like this. Notice that every box begin with the person’s name.

Copy the duplicate the box by doing Copy and Paste.

Change the name that marks the beginning of the box (Figure 4.1: Step 1).

Change the name displayed to the end user (Figure 4.1: Step 2).

Change the email address displayed to the end-user (Figure 4.1: Step 3). Notice the format.

FIGURE 4.1

If you have the photograph of the person, save it to /images/photoid and update the code:

FIGURE 4.2

Change the filename of the image (Figure 4.2: Step 4).

Change the class keyword to equal to “profile_photo” instead of “blank_photo” (Figure 4.2:

Step 5).

If you have the any other information supplied by the person you can add it to be displayed when

the end-user pressed on the “more information” link.

FIGURE 4.3

Change the name in the four different places highlighted in the illustration above (Figure 4.3:

Steps 6-9).

FIGURE 4.4

Next, add the information supplied by the RA (Figure 4.4: Step 10).

Finally, you need to declare whether the person is a team leader or not (Figure 4.5).

FIGURE 4.5

If the newly added RA is a team leader the highlighted line should read:

(Team Leader)

Otherwise, the line should read:

At this point you are done editing the file. Save and upload it to the server.

MOVING A RESEARCH ASSISTANT TO THE FORMER RA’S PAGE

When a research assistant leaves the project we need to update the 3_2_active_ra.html page

in order to reflect the change. In this case, the person in question stops being an active RA and

becomes a former RA. Therefore, we remove the person from the 3_2_active_ra.html page

and list him or her on the 3_3_former_ra.html page.

Go to /include/content and open 3_2_active_ra.html in your HTML editor. Find the

box that contains RA’s information. Copy the box and then delete it.

Now, open 3_3_former_ra.html in your editor and find the appropriate language group.

Paste the box with RA’s information.

Save 3_3_former_ra.html and close the file. Save 3_2_active_ra.html and close the

file.

Upload both files to the server.

MIGRATING THE WEBSITE TO A
DIFFERENT LOCATION

Suppose you need to move the website from your current server to a new server. In this case you

will need to modify the following files:

/settings.php

/index.php
/js/map_components.js

Open up settings.php and modify the line of code that specifies the base domain name

(Figure 5.0).

In order to make the modification you need to know the folder structure of the destination server.

Notice that this folder structure may or may not be equivalent to the URL that you see in the web

browser. For example, you may type in www.somedomain.com/hlvc/index.php

to access the website on the new server, however the folder structure may be something like this:

/user/production/v1.2/hlvc/index.php. Therefore, to perform this task correctly,

make sure you know the correct folder structure. Sometime you are able to find this information

just by browsing through directories via an FTP client, however often FTP client won’t be

enough. In such cases you will need to obtain such information from your host provider or from

the server administrator.

FIGURE 5.0

It is a good idea to leave the original code and add your new code right below. Make sure to

comment out the old code, so that the server won’t execute it. In PHP, you can comment the

code by using “//” (Figure 5.1).

FIGURE 5.1

Save you work and close settings.php file.

If it is the case that the URL with which you are accessing the website will change as a result of

the migration, then you will need to modify the index.php and the map_components.js files

as well.

Open index.php file in the editor and change the URL address to point to a new web address

(Figure 5.2).

FIGURE 5.2

You only need to modify the highlighted portion of the web address (Figure 5.3).

FIGURE 5.3

Save and close the file.

Once again, notice the difference between the settings.php and the index.php files. In

settings.php you are updating the folder structure. In index.php you are updating the URL

with which you are accessing the website.

Next, go to /js folder and open map_components.js file. The 8
th

line of the file contains a link to

the folder, which contains audio samples (Figure 5.4).

FIGURE 5.4

Update the URL so that it points to the new location (Figure 5.5).

FIGURE 5.5

Upload the modified files to your server.

LINKING TO THE WEBSITE FROM
OTHER WEBSITES

Always link to the container page (.php). Never link to the text content components or any other

components.

Below is an example of an HTML link code:

HLVC Website

Of course, this is only an example. In reality you will need to substitute the

“http://www.domainname.com/index.php” for the real URL address.

